|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- cjvt/sentinews |
|
language: |
|
- sl |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
model-index: |
|
- name: sloberta-sentinews-sentence |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Sentiment classification |
|
dataset: |
|
type: cjvt/sentinews |
|
name: SentiNews |
|
config: sentence_level |
|
metrics: |
|
- type: f1 |
|
value: 0.6851357247321056 |
|
name: Test macro F1 |
|
- type: accuracy |
|
value: 0.7158081705150977 |
|
name: Test accuracy |
|
- type: f1 |
|
value: 0.6934678744913757 |
|
name: Validation macro F1 |
|
- type: accuracy |
|
value: 0.7207815275310835 |
|
name: Validation accuracy |
|
--- |
|
|
|
# sloberta-sentinews-sentence |
|
|
|
Slovenian 3-class sentiment classifier - [SloBERTa](https://huggingface.co./EMBEDDIA/sloberta) fine-tuned on the sentence-level config of the |
|
SentiNews dataset. |
|
|
|
The model is intended as: |
|
(1) an out-of-the box sentence-level sentiment classifier or |
|
(2) a sentence-level sentiment classification baseline. |
|
|
|
## Fine-tuning details |
|
The model was fine-tuned on a random 90%/5%/5% train-val-test split of the `sentence_level` configuration of the [cjvt/sentinews](https://huggingface.co./datasets/cjvt/sentinews) dataset |
|
using the following hyperparameters: |
|
``` |
|
max_length = 79 # 99th percentile of encoded training sequences, sequences are padded/truncated to this length |
|
batch_size = 128 |
|
optimizer = "adamw_torch" |
|
learning_rate = 2e-5 |
|
num_epochs = 10 |
|
validation_metric = "macro_f1" |
|
``` |
|
|
|
Feel free to inspect `training_args.bin` for more details. |
|
|
|
If you wish to directly compare your model to this one, you should use the same split as this model. To do so, use the following code: |
|
```python |
|
import json |
|
import datasets |
|
|
|
# You can find split_indices.json in the 'Files and versions' tab |
|
with open("split_indices.json", "r") as f_split: |
|
split = json.load(f_split) |
|
|
|
data = datasets.load_dataset("cjvt/sentinews", "sentence_level", split="train") |
|
train_data = data.select(split["train_indices"]) |
|
dev_data = data.select(split["dev_indices"]) |
|
test_data = data.select(split["test_indices"]) |
|
``` |
|
|
|
## Evaluation results |
|
|
|
Best validation set results: |
|
``` |
|
{ |
|
"eval_accuracy": 0.7207815275310835, |
|
"eval_f1_macro": 0.6934678744913757, |
|
"eval_f1_negative": 0.7042136003337507, |
|
"eval_f1_neutral": 0.759215853398679, |
|
"eval_f1_positive": 0.6169741697416974, |
|
"eval_loss": 0.6337869167327881, |
|
"eval_precision_negative": 0.6685148514851486, |
|
"eval_precision_neutral": 0.7752393385552655, |
|
"eval_precision_positive": 0.6314199395770392, |
|
"eval_recall_negative": 0.74394006170119, |
|
"eval_recall_neutral": 0.7438413361169103, |
|
"eval_recall_positive": 0.6031746031746031 |
|
} |
|
``` |
|
|
|
Test set results: |
|
``` |
|
{ |
|
"test_loss": 0.6395984888076782, |
|
"test_accuracy": 0.7158081705150977, |
|
"test_precision_negative": 0.6570397111913358, |
|
"test_recall_negative": 0.7292965271593945, |
|
"test_f1_negative": 0.6912850812407682, |
|
"test_precision_neutral": 0.7748017998714377, |
|
"test_recall_neutral": 0.7418957734919983, |
|
"test_f1_neutral": 0.7579918247563149, |
|
"test_precision_positive": 0.6155642023346304, |
|
"test_recall_positive": 0.5969811320754717, |
|
"test_f1_positive": 0.6061302681992337, |
|
"test_f1_macro": 0.6851357247321056, |
|
} |
|
``` |