--- license: cc-by-sa-4.0 datasets: - cjvt/sentinews language: - sl library_name: transformers pipeline_tag: text-classification model-index: - name: sloberta-sentinews-sentence results: - task: type: text-classification name: Sentiment classification dataset: type: cjvt/sentinews name: SentiNews config: sentence_level metrics: - type: f1 value: 0.6851357247321056 name: Test macro F1 - type: accuracy value: 0.7158081705150977 name: Test accuracy - type: f1 value: 0.6934678744913757 name: Validation macro F1 - type: accuracy value: 0.7207815275310835 name: Validation accuracy --- # sloberta-sentinews-sentence Slovenian 3-class sentiment classifier - [SloBERTa](https://huggingface.co./EMBEDDIA/sloberta) fine-tuned on the sentence-level config of the SentiNews dataset. The model is intended as: (1) an out-of-the box sentence-level sentiment classifier or (2) a sentence-level sentiment classification baseline. ## Fine-tuning details The model was fine-tuned on a random 90%/5%/5% train-val-test split of the `sentence_level` configuration of the [cjvt/sentinews](https://huggingface.co./datasets/cjvt/sentinews) dataset using the following hyperparameters: ``` max_length = 79 # 99th percentile of encoded training sequences, sequences are padded/truncated to this length batch_size = 128 optimizer = "adamw_torch" learning_rate = 2e-5 num_epochs = 10 validation_metric = "macro_f1" ``` Feel free to inspect `training_args.bin` for more details. If you wish to directly compare your model to this one, you should use the same split as this model. To do so, use the following code: ```python import json import datasets # You can find split_indices.json in the 'Files and versions' tab with open("split_indices.json", "r") as f_split: split = json.load(f_split) data = datasets.load_dataset("cjvt/sentinews", "sentence_level", split="train") train_data = data.select(split["train_indices"]) dev_data = data.select(split["dev_indices"]) test_data = data.select(split["test_indices"]) ``` ## Evaluation results Best validation set results: ``` { "eval_accuracy": 0.7207815275310835, "eval_f1_macro": 0.6934678744913757, "eval_f1_negative": 0.7042136003337507, "eval_f1_neutral": 0.759215853398679, "eval_f1_positive": 0.6169741697416974, "eval_loss": 0.6337869167327881, "eval_precision_negative": 0.6685148514851486, "eval_precision_neutral": 0.7752393385552655, "eval_precision_positive": 0.6314199395770392, "eval_recall_negative": 0.74394006170119, "eval_recall_neutral": 0.7438413361169103, "eval_recall_positive": 0.6031746031746031 } ``` Test set results: ``` { "test_loss": 0.6395984888076782, "test_accuracy": 0.7158081705150977, "test_precision_negative": 0.6570397111913358, "test_recall_negative": 0.7292965271593945, "test_f1_negative": 0.6912850812407682, "test_precision_neutral": 0.7748017998714377, "test_recall_neutral": 0.7418957734919983, "test_f1_neutral": 0.7579918247563149, "test_precision_positive": 0.6155642023346304, "test_recall_positive": 0.5969811320754717, "test_f1_positive": 0.6061302681992337, "test_f1_macro": 0.6851357247321056, } ```