bert-finetuned-mrpc / README.md
chineidu's picture
End of training
3b218b5
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8088235294117647
- name: F1
type: f1
value: 0.8682432432432433
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5401
- Accuracy: 0.8088
- F1: 0.8682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 459 | 0.4804 | 0.7770 | 0.8384 |
| 0.5792 | 2.0 | 918 | 0.5523 | 0.7966 | 0.8668 |
| 0.4419 | 3.0 | 1377 | 0.5401 | 0.8088 | 0.8682 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1