bert-finetuned-mrpc / README.md
chineidu's picture
End of training
3b218b5
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-finetuned-mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8088235294117647
          - name: F1
            type: f1
            value: 0.8682432432432433

bert-finetuned-mrpc

This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5401
  • Accuracy: 0.8088
  • F1: 0.8682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 459 0.4804 0.7770 0.8384
0.5792 2.0 918 0.5523 0.7966 0.8668
0.4419 3.0 1377 0.5401 0.8088 0.8682

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1