|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: TokenizerTestingMTSUFall2024SoftwareEngineering |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TokenizerTestingMTSUFall2024SoftwareEngineering |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co./google-t5/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5834 |
|
- Rouge1: 0.2719 |
|
- Rouge2: 0.2175 |
|
- Rougel: 0.2629 |
|
- Rougelsum: 0.2629 |
|
- Gen Len: 18.9753 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 1.8415 | 1.0 | 12975 | 1.6850 | 0.2704 | 0.2117 | 0.2604 | 0.2604 | 18.9826 | |
|
| 1.7849 | 2.0 | 25950 | 1.6190 | 0.2713 | 0.2159 | 0.2621 | 0.262 | 18.9747 | |
|
| 1.7692 | 3.0 | 38925 | 1.5916 | 0.2718 | 0.2172 | 0.2628 | 0.2627 | 18.9762 | |
|
| 1.74 | 4.0 | 51900 | 1.5834 | 0.2719 | 0.2175 | 0.2629 | 0.2629 | 18.9753 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|