TokenizerTestingMTSUFall2024SoftwareEngineering
This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5198
- Rouge1: 0.2778
- Rouge2: 0.2234
- Rougel: 0.2686
- Rougelsum: 0.2686
- Gen Len: 18.9697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.8333 | 1.0 | 12429 | 1.6354 | 0.2717 | 0.2139 | 0.262 | 0.262 | 18.9751 |
1.7368 | 2.0 | 24858 | 1.5610 | 0.2763 | 0.2208 | 0.267 | 0.267 | 18.9735 |
1.6978 | 3.0 | 37287 | 1.5291 | 0.2777 | 0.2227 | 0.2683 | 0.2682 | 18.9699 |
1.7008 | 4.0 | 49716 | 1.5198 | 0.2778 | 0.2234 | 0.2686 | 0.2686 | 18.9697 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 440
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cheaptrix/TokenizerTestingMTSUFall2024SoftwareEngineering
Base model
google-t5/t5-small