|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: KT-AI/midm-bitext-S-7B-inst-v1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lora-midm-nsmc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lora-midm-nsmc |
|
|
|
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an nsmc dataset. |
|
|
|
## Model description |
|
|
|
KT-midm modelμ nsmcλ°μ΄ν°λ₯Ό νμ©νμ¬ λ―ΈμΈνλν λͺ¨λΈ |
|
μν 리뷰 λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ μ νμ
νλ€. |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
### Intended uses |
|
μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ κ°μ λΆμμ μ κ³΅ν¨ |
|
|
|
### Limitaions |
|
μν 리뷰μ νΉνλμ΄ μμΌλ©°, λ€λ₯Έ μ νμλ μ νμ΄ μμ μ μμ |
|
Colab T4 GPUμμ ν
μ€νΈ λμμ |
|
|
|
## Training and evaluation data |
|
|
|
Training data: nsmc 'train' data μ€ μμ 2000κ°μ μν |
|
Evaluation data: nsmc 'test' data μ€ μμ 1000κ°μ μν |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- training_steps: 300 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/652384150f935fa8fd6c6779/jd7jtIHmniBqcYJ3tlEID.png) |
|
|
|
TrainOutput(global_step=300, training_loss=1.1105608495076498, |
|
metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646, |
|
'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0, |
|
'train_loss': 1.1105608495076498, 'epoch': 0.3}) |
|
|
|
### μ νλ |
|
Midm: μ νλ 0.89 |
|
| | Positive Prediction(PP) | Negative Prediction(NP) | |
|
|--------------------|---------------------|---------------------| |
|
| True Positive (TP) | 474 | 34 | |
|
| True Negative (TN) | 76 | 416 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|