lora-midm-nsmc / README.md
chaem's picture
Update README.md
3cf0c18
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-nsmc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora-midm-nsmc
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an nsmc dataset.
## Model description
KT-midm model을 nsmc데이터λ₯Ό ν™œμš©ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹ν•œ λͺ¨λΈ
μ˜ν™” 리뷰 데이터λ₯Ό 기반으둜 μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” 뢀정을 νŒŒμ•…ν•œλ‹€.
## Intended uses & limitations
### Intended uses
μ‚¬μš©μžκ°€ μž‘μ„±ν•œ 리뷰의 긍정 λ˜λŠ” λΆ€μ • 감정 뢄석을 μ œκ³΅ν•¨
### Limitaions
μ˜ν™” 리뷰에 νŠΉν™”λ˜μ–΄ 있으며, λ‹€λ₯Έ μœ ν˜•μ—λŠ” μ œν•œμ΄ μžˆμ„ 수 있음
Colab T4 GPUμ—μ„œ ν…ŒμŠ€νŠΈ λ˜μ—ˆμŒ
## Training and evaluation data
Training data: nsmc 'train' data 쀑 μƒμœ„ 2000개의 μƒ˜ν”Œ
Evaluation data: nsmc 'test' data 쀑 μƒμœ„ 1000개의 μƒ˜ν”Œ
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
![image/png](https://cdn-uploads.huggingface.co/production/uploads/652384150f935fa8fd6c6779/jd7jtIHmniBqcYJ3tlEID.png)
TrainOutput(global_step=300, training_loss=1.1105608495076498,
metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646,
'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0,
'train_loss': 1.1105608495076498, 'epoch': 0.3})
### 정확도
Midm: 정확도 0.89
| | Positive Prediction(PP) | Negative Prediction(NP) |
|--------------------|---------------------|---------------------|
| True Positive (TP) | 474 | 34 |
| True Negative (TN) | 76 | 416 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0