--- license: cc-by-nc-4.0 base_model: KT-AI/midm-bitext-S-7B-inst-v1 tags: - generated_from_trainer model-index: - name: lora-midm-nsmc results: [] --- # lora-midm-nsmc This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an nsmc dataset. ## Model description KT-midm model을 nsmc데이터를 활용하여 미세튜닝한 모델 영화 리뷰 데이터를 기반으로 사용자가 작성한 리뷰의 긍정 또는 부정을 파악한다. ## Intended uses & limitations ### Intended uses 사용자가 작성한 리뷰의 긍정 또는 부정 감정 분석을 제공함 ### Limitaions 영화 리뷰에 특화되어 있으며, 다른 유형에는 제한이 있을 수 있음 Colab T4 GPU에서 테스트 되었음 ## Training and evaluation data Training data: nsmc 'train' data 중 상위 2000개의 샘플 Evaluation data: nsmc 'test' data 중 상위 1000개의 샘플 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652384150f935fa8fd6c6779/jd7jtIHmniBqcYJ3tlEID.png) TrainOutput(global_step=300, training_loss=1.1105608495076498, metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646, 'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0, 'train_loss': 1.1105608495076498, 'epoch': 0.3}) ### 정확도 Midm: 정확도 0.89 | | Positive Prediction(PP) | Negative Prediction(NP) | |--------------------|---------------------|---------------------| | True Positive (TP) | 474 | 34 | | True Negative (TN) | 76 | 416 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0