|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3853 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: ' |
|
|
|
UDPv6TransportDescriptor |
|
|
|
------------------------' |
|
sentences: |
|
- What is the primary purpose of the "Status" objects in the context of entities? |
|
- What is the main concept that this piece of code demonstrates, and how do the |
|
provided topology and QoS policy settings relate to it? |
|
- What is the primary characteristic of UDP transport in terms of connection establishment? |
|
- source_sentence: 'With a fragment size of 64 kB, the Publisher has to send about |
|
1100 |
|
|
|
fragments to send the whole file. A possible configuration for this |
|
|
|
scenario could be:' |
|
sentences: |
|
- What is the likely reason why the Publisher needs to use "RELIABLE_ RELIABILITY_QOS" |
|
in this scenario? |
|
- What is the effect of defining a custom Metatraffic Unicast Locators on the behavior |
|
of a DomainParticipant? |
|
- What is the primary function of the transport layer in DDS, as described in the |
|
provided context? |
|
- source_sentence: '+------------------------------------+---------------------------------------------------+------------+ |
|
|
|
| QosPolicy class | Accessor/Mutator | |
|
Mutable | |
|
|
|
|====================================|===================================================|============| |
|
|
|
| RTPSEndpointQos | "endpoint()" | |
|
No | |
|
|
|
+------------------------------------+---------------------------------------------------+------------+' |
|
sentences: |
|
- What is the effect of setting "ON" as the DataSharingKind in the context of data-sharing |
|
delivery? |
|
- What is the purpose of the RTPSEndpointQos class in the context of DataWriter |
|
QoS policies? |
|
- What is the primary purpose of the RTPSEndpointQos policy in a DDS (Data Distribution |
|
Service) system? |
|
- source_sentence: "Note: When \"non_blocking_send\" is set to \"true\", send operations\ |
|
\ will\n return immediately if the send buffer might get full, but no error\n\ |
|
\ will be returned to the upper layer. This means that the application\n will\ |
|
\ behave as if the packet is sent and lost.When set to \"false\",\n send operations\ |
|
\ will block until the network buffer has space for\n the packet." |
|
sentences: |
|
- What happens when "non_blocking_send" is set to "true" in TCP transport? |
|
- What is the purpose of the "<default_external_unicast_locators>" element in the |
|
RTPS configuration? |
|
- What is the purpose of the "<enabled>" value in the DisablePositiveAcks QoS policy? |
|
- source_sentence: 'After calling the "DataReader::read()" or "DataReader::take()" |
|
|
|
operations, accessing the data on the returned sequences is quite |
|
|
|
easy. The sequences API provides a **length()** operation returning |
|
|
|
the number of elements in the collections. The application code just |
|
|
|
needs to check this value and use the **[]** operator to access the |
|
|
|
corresponding elements. Elements on the DDS data sequence should only |
|
|
|
be accessed when the corresponding element on the SampleInfo sequence |
|
|
|
indicate that valid data is present. When using Data Sharing, it is |
|
|
|
also important to check that the sample is valid (i.e, not replaced, |
|
|
|
refer to DataReader and DataWriter history coupling for further |
|
|
|
information in this regard).' |
|
sentences: |
|
- What is the primary method described in the text for accessing data on returned |
|
sequences after calling "DataReader::read()" or "DataReader::take()" operations? |
|
- What is the primary advantage of using Shared Memory Transport (SHM) compared |
|
to other network transports like UDP/TCP? |
|
- What are the steps to install Fast DDS library, Python bindings, and Gen generation |
|
tool from sources in a Linux environment? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: Fine tuning poc1-30e |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.34265734265734266 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5291375291375291 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5757575757575758 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6643356643356644 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.34265734265734266 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.17637917637917636 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11515151515151513 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.06643356643356643 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.34265734265734266 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5291375291375291 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5757575757575758 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6643356643356644 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4999219586168879 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.44783734783734785 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.45732757969458965 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5314685314685315 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5804195804195804 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.655011655011655 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.17715617715617715 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11608391608391608 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0655011655011655 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5314685314685315 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5804195804195804 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.655011655011655 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4931410715247713 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.44150664150664165 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4520914166409126 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.331002331002331 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5384615384615384 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5734265734265734 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.662004662004662 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.331002331002331 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1794871794871795 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11468531468531468 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0662004662004662 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.331002331002331 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5384615384615384 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5734265734265734 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.662004662004662 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4946456648216315 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4414687164687165 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4517532849343265 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.32867132867132864 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5291375291375291 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.578088578088578 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6643356643356644 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.32867132867132864 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.17637917637917636 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11561771561771561 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.06643356643356643 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.32867132867132864 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5291375291375291 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.578088578088578 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6643356643356644 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.491729303526411 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4370564620564619 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4465064100234966 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.317016317016317 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.5058275058275058 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5734265734265734 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.655011655011655 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.317016317016317 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1686091686091686 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11468531468531468 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.06550116550116548 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.317016317016317 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5058275058275058 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5734265734265734 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.655011655011655 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4805357725353263 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.42515355015355016 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.43416870212536746 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Fine tuning poc1-30e |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-30-epochs") |
|
# Run inference |
|
sentences = [ |
|
'After calling the "DataReader::read()" or "DataReader::take()"\noperations, accessing the data on the returned sequences is quite\neasy. The sequences API provides a **length()** operation returning\nthe number of elements in the collections. The application code just\nneeds to check this value and use the **[]** operator to access the\ncorresponding elements. Elements on the DDS data sequence should only\nbe accessed when the corresponding element on the SampleInfo sequence\nindicate that valid data is present. When using Data Sharing, it is\nalso important to check that the sample is valid (i.e, not replaced,\nrefer to DataReader and DataWriter history coupling for further\ninformation in this regard).', |
|
'What is the primary method described in the text for accessing data on returned sequences after calling "DataReader::read()" or "DataReader::take()" operations?', |
|
'What are the steps to install Fast DDS library, Python bindings, and Gen generation tool from sources in a Linux environment?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3427 | |
|
| cosine_accuracy@3 | 0.5291 | |
|
| cosine_accuracy@5 | 0.5758 | |
|
| cosine_accuracy@10 | 0.6643 | |
|
| cosine_precision@1 | 0.3427 | |
|
| cosine_precision@3 | 0.1764 | |
|
| cosine_precision@5 | 0.1152 | |
|
| cosine_precision@10 | 0.0664 | |
|
| cosine_recall@1 | 0.3427 | |
|
| cosine_recall@3 | 0.5291 | |
|
| cosine_recall@5 | 0.5758 | |
|
| cosine_recall@10 | 0.6643 | |
|
| cosine_ndcg@10 | 0.4999 | |
|
| cosine_mrr@10 | 0.4478 | |
|
| **cosine_map@100** | **0.4573** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3333 | |
|
| cosine_accuracy@3 | 0.5315 | |
|
| cosine_accuracy@5 | 0.5804 | |
|
| cosine_accuracy@10 | 0.655 | |
|
| cosine_precision@1 | 0.3333 | |
|
| cosine_precision@3 | 0.1772 | |
|
| cosine_precision@5 | 0.1161 | |
|
| cosine_precision@10 | 0.0655 | |
|
| cosine_recall@1 | 0.3333 | |
|
| cosine_recall@3 | 0.5315 | |
|
| cosine_recall@5 | 0.5804 | |
|
| cosine_recall@10 | 0.655 | |
|
| cosine_ndcg@10 | 0.4931 | |
|
| cosine_mrr@10 | 0.4415 | |
|
| **cosine_map@100** | **0.4521** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.331 | |
|
| cosine_accuracy@3 | 0.5385 | |
|
| cosine_accuracy@5 | 0.5734 | |
|
| cosine_accuracy@10 | 0.662 | |
|
| cosine_precision@1 | 0.331 | |
|
| cosine_precision@3 | 0.1795 | |
|
| cosine_precision@5 | 0.1147 | |
|
| cosine_precision@10 | 0.0662 | |
|
| cosine_recall@1 | 0.331 | |
|
| cosine_recall@3 | 0.5385 | |
|
| cosine_recall@5 | 0.5734 | |
|
| cosine_recall@10 | 0.662 | |
|
| cosine_ndcg@10 | 0.4946 | |
|
| cosine_mrr@10 | 0.4415 | |
|
| **cosine_map@100** | **0.4518** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3287 | |
|
| cosine_accuracy@3 | 0.5291 | |
|
| cosine_accuracy@5 | 0.5781 | |
|
| cosine_accuracy@10 | 0.6643 | |
|
| cosine_precision@1 | 0.3287 | |
|
| cosine_precision@3 | 0.1764 | |
|
| cosine_precision@5 | 0.1156 | |
|
| cosine_precision@10 | 0.0664 | |
|
| cosine_recall@1 | 0.3287 | |
|
| cosine_recall@3 | 0.5291 | |
|
| cosine_recall@5 | 0.5781 | |
|
| cosine_recall@10 | 0.6643 | |
|
| cosine_ndcg@10 | 0.4917 | |
|
| cosine_mrr@10 | 0.4371 | |
|
| **cosine_map@100** | **0.4465** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.317 | |
|
| cosine_accuracy@3 | 0.5058 | |
|
| cosine_accuracy@5 | 0.5734 | |
|
| cosine_accuracy@10 | 0.655 | |
|
| cosine_precision@1 | 0.317 | |
|
| cosine_precision@3 | 0.1686 | |
|
| cosine_precision@5 | 0.1147 | |
|
| cosine_precision@10 | 0.0655 | |
|
| cosine_recall@1 | 0.317 | |
|
| cosine_recall@3 | 0.5058 | |
|
| cosine_recall@5 | 0.5734 | |
|
| cosine_recall@10 | 0.655 | |
|
| cosine_ndcg@10 | 0.4805 | |
|
| cosine_mrr@10 | 0.4252 | |
|
| **cosine_map@100** | **0.4342** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 30 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 30 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.6639 | 10 | 5.6138 | - | - | - | - | - | |
|
| 0.9959 | 15 | - | 0.3594 | 0.3735 | 0.3723 | 0.3161 | 0.3807 | |
|
| 1.3278 | 20 | 4.9173 | - | - | - | - | - | |
|
| 1.9917 | 30 | 3.7581 | 0.3874 | 0.4014 | 0.4026 | 0.3729 | 0.4032 | |
|
| 2.6556 | 40 | 3.0018 | - | - | - | - | - | |
|
| 2.9876 | 45 | - | 0.4031 | 0.4200 | 0.4212 | 0.3858 | 0.4223 | |
|
| 3.3195 | 50 | 2.5035 | - | - | - | - | - | |
|
| 3.9834 | 60 | 1.9031 | 0.4187 | 0.4303 | 0.4178 | 0.3958 | 0.4291 | |
|
| 4.6473 | 70 | 1.474 | - | - | - | - | - | |
|
| 4.9793 | 75 | - | 0.4293 | 0.4332 | 0.4318 | 0.4172 | 0.4401 | |
|
| 5.3112 | 80 | 1.2801 | - | - | - | - | - | |
|
| 5.9751 | 90 | 0.9577 | 0.4397 | 0.4382 | 0.4444 | 0.4275 | 0.4518 | |
|
| 6.6390 | 100 | 0.7539 | - | - | - | - | - | |
|
| 6.9710 | 105 | - | 0.4434 | 0.4414 | 0.4496 | 0.4262 | 0.4466 | |
|
| 7.3029 | 110 | 0.694 | - | - | - | - | - | |
|
| 7.9668 | 120 | 0.5147 | 0.4423 | 0.4488 | 0.4507 | 0.4358 | 0.4495 | |
|
| 8.6307 | 130 | 0.4589 | - | - | - | - | - | |
|
| 8.9627 | 135 | - | 0.4488 | 0.4575 | 0.4544 | 0.4407 | 0.4493 | |
|
| 9.2946 | 140 | 0.3843 | - | - | - | - | - | |
|
| 9.9585 | 150 | 0.3506 | 0.4521 | 0.4465 | 0.4559 | 0.4420 | 0.4485 | |
|
| 10.6224 | 160 | 0.2723 | - | - | - | - | - | |
|
| 10.9544 | 165 | - | 0.4497 | 0.4435 | 0.4499 | 0.4304 | 0.4453 | |
|
| 11.2863 | 170 | 0.2555 | - | - | - | - | - | |
|
| 11.9502 | 180 | 0.2077 | 0.4448 | 0.4472 | 0.4468 | 0.4287 | 0.4453 | |
|
| 12.6141 | 190 | 0.1894 | - | - | - | - | - | |
|
| **12.9461** | **195** | **-** | **0.4516** | **0.4463** | **0.4566** | **0.4336** | **0.452** | |
|
| 13.2780 | 200 | 0.1725 | - | - | - | - | - | |
|
| 13.9419 | 210 | 0.1395 | 0.4528 | 0.4520 | 0.4561 | 0.4333 | 0.4534 | |
|
| 14.6058 | 220 | 0.155 | - | - | - | - | - | |
|
| 14.9378 | 225 | - | 0.4461 | 0.4491 | 0.4527 | 0.4369 | 0.4517 | |
|
| 15.2697 | 230 | 0.132 | - | - | - | - | - | |
|
| 15.9336 | 240 | 0.1148 | - | - | - | - | - | |
|
| 16.0 | 241 | - | 0.4482 | 0.4537 | 0.4540 | 0.4303 | 0.4538 | |
|
| 16.5975 | 250 | 0.1061 | - | - | - | - | - | |
|
| 16.9959 | 256 | - | 0.4464 | 0.4538 | 0.4551 | 0.4294 | 0.4577 | |
|
| 17.2614 | 260 | 0.0961 | - | - | - | - | - | |
|
| 17.9253 | 270 | 0.087 | - | - | - | - | - | |
|
| 17.9917 | 271 | - | 0.4485 | 0.4483 | 0.4495 | 0.4326 | 0.4568 | |
|
| 18.5892 | 280 | 0.1009 | - | - | - | - | - | |
|
| 18.9876 | 286 | - | 0.4483 | 0.4517 | 0.4545 | 0.4396 | 0.4565 | |
|
| 19.2531 | 290 | 0.0854 | - | - | - | - | - | |
|
| 19.9170 | 300 | 0.073 | - | - | - | - | - | |
|
| 19.9834 | 301 | - | 0.4473 | 0.4502 | 0.4521 | 0.4349 | 0.4548 | |
|
| 20.5809 | 310 | 0.0726 | - | - | - | - | - | |
|
| 20.9793 | 316 | - | 0.4466 | 0.4525 | 0.4538 | 0.4341 | 0.4583 | |
|
| 21.2448 | 320 | 0.0747 | - | - | - | - | - | |
|
| 21.9087 | 330 | 0.0621 | - | - | - | - | - | |
|
| 21.9751 | 331 | - | 0.4441 | 0.4537 | 0.4534 | 0.4388 | 0.4564 | |
|
| 22.5726 | 340 | 0.0682 | - | - | - | - | - | |
|
| 22.9710 | 346 | - | 0.4454 | 0.4529 | 0.4544 | 0.4385 | 0.4589 | |
|
| 23.2365 | 350 | 0.0612 | - | - | - | - | - | |
|
| 23.9004 | 360 | 0.0546 | - | - | - | - | - | |
|
| 23.9668 | 361 | - | 0.4464 | 0.4494 | 0.4551 | 0.4381 | 0.4567 | |
|
| 24.5643 | 370 | 0.0599 | - | - | - | - | - | |
|
| 24.9627 | 376 | - | 0.4465 | 0.4506 | 0.4553 | 0.4363 | 0.4567 | |
|
| 25.2282 | 380 | 0.0591 | - | - | - | - | - | |
|
| 25.8921 | 390 | 0.0562 | - | - | - | - | - | |
|
| 25.9585 | 391 | - | 0.4454 | 0.4515 | 0.4532 | 0.4343 | 0.4575 | |
|
| 26.5560 | 400 | 0.0623 | - | - | - | - | - | |
|
| 26.9544 | 406 | - | 0.4452 | 0.4531 | 0.4544 | 0.4342 | 0.4573 | |
|
| 27.2199 | 410 | 0.061 | - | - | - | - | - | |
|
| 27.8838 | 420 | 0.053 | - | - | - | - | - | |
|
| 27.9502 | 421 | - | 0.4454 | 0.4514 | 0.4533 | 0.4330 | 0.4573 | |
|
| 28.5477 | 430 | 0.0564 | - | - | - | - | - | |
|
| 28.9461 | 436 | - | 0.4465 | 0.4516 | 0.4533 | 0.4338 | 0.4562 | |
|
| 29.2116 | 440 | 0.056 | - | - | - | - | - | |
|
| 29.8755 | 450 | 0.0586 | 0.4465 | 0.4518 | 0.4521 | 0.4342 | 0.4573 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |