cferreiragonz's picture
Add new SentenceTransformer model.
caeb03a verified
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:3853
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
widget:
  - source_sentence: |-

      UDPv6TransportDescriptor
      ------------------------
    sentences:
      - >-
        What is the primary purpose of the "Status" objects in the context of
        entities?
      - >-
        What is the main concept that this piece of code demonstrates, and how
        do the provided topology and QoS policy settings relate to it?
      - >-
        What is the primary characteristic of UDP transport in terms of
        connection establishment?
  - source_sentence: |-
      With a fragment size of 64 kB, the Publisher has to send about 1100
      fragments to send the whole file. A possible configuration for this
      scenario could be:
    sentences:
      - >-
        What is the likely reason why the Publisher needs to use "RELIABLE_
        RELIABILITY_QOS" in this scenario?
      - >-
        What is the effect of defining a custom Metatraffic Unicast Locators on
        the behavior of a DomainParticipant?
      - >-
        What is the primary function of the transport layer in DDS, as described
        in the provided context?
  - source_sentence: >-
      +------------------------------------+---------------------------------------------------+------------+

      | QosPolicy class                    |
      Accessor/Mutator                                  | Mutable    |

      |====================================|===================================================|============|

      | RTPSEndpointQos                    |
      "endpoint()"                                      | No         |

      +------------------------------------+---------------------------------------------------+------------+
    sentences:
      - >-
        What is the effect of setting "ON" as the DataSharingKind in the context
        of data-sharing delivery?
      - >-
        What is the purpose of the RTPSEndpointQos class in the context of
        DataWriter QoS policies?
      - >-
        What is the primary purpose of the RTPSEndpointQos policy in a DDS (Data
        Distribution Service) system?
  - source_sentence: |-
      Note:  When "non_blocking_send" is set to "true", send operations will
        return immediately if the send buffer might get full, but no error
        will be returned to the upper layer. This means that the application
        will behave as if the packet is sent and lost.When set to "false",
        send operations will block until the network buffer has space for
        the packet.
    sentences:
      - What happens when "non_blocking_send" is set to "true" in TCP transport?
      - >-
        What is the purpose of the "<default_external_unicast_locators>" element
        in the RTPS configuration?
      - >-
        What is the purpose of the "<enabled>" value in the DisablePositiveAcks
        QoS policy?
  - source_sentence: |-
      After calling the "DataReader::read()" or "DataReader::take()"
      operations, accessing the data on the returned sequences is quite
      easy. The sequences API provides a **length()** operation returning
      the number of elements in the collections. The application code just
      needs to check this value and use the **[]** operator to access the
      corresponding elements. Elements on the DDS data sequence should only
      be accessed when the corresponding element on the SampleInfo sequence
      indicate that valid data is present. When using Data Sharing, it is
      also important to check that the sample is valid (i.e, not replaced,
      refer to DataReader and DataWriter history coupling for further
      information in this regard).
    sentences:
      - >-
        What is the primary method described in the text for accessing data on
        returned sequences after calling "DataReader::read()" or
        "DataReader::take()" operations?
      - >-
        What is the primary advantage of using Shared Memory Transport (SHM)
        compared to other network transports like UDP/TCP?
      - >-
        What are the steps to install Fast DDS library, Python bindings, and Gen
        generation tool from sources in a Linux environment?
pipeline_tag: sentence-similarity
model-index:
  - name: Fine tuning poc1-30e
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.34265734265734266
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5291375291375291
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5757575757575758
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6643356643356644
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.34265734265734266
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.17637917637917636
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11515151515151513
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06643356643356643
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.34265734265734266
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5291375291375291
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5757575757575758
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6643356643356644
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4999219586168879
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.44783734783734785
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.45732757969458965
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.3333333333333333
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5314685314685315
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5804195804195804
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.655011655011655
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3333333333333333
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.17715617715617715
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11608391608391608
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0655011655011655
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3333333333333333
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5314685314685315
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5804195804195804
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.655011655011655
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4931410715247713
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.44150664150664165
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4520914166409126
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.331002331002331
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5384615384615384
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5734265734265734
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.662004662004662
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.331002331002331
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1794871794871795
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11468531468531468
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0662004662004662
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.331002331002331
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5384615384615384
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5734265734265734
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.662004662004662
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4946456648216315
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4414687164687165
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4517532849343265
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.32867132867132864
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5291375291375291
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.578088578088578
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6643356643356644
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32867132867132864
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.17637917637917636
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11561771561771561
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06643356643356643
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.32867132867132864
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5291375291375291
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.578088578088578
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6643356643356644
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.491729303526411
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4370564620564619
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4465064100234966
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.317016317016317
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5058275058275058
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5734265734265734
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.655011655011655
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.317016317016317
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1686091686091686
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11468531468531468
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06550116550116548
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.317016317016317
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5058275058275058
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5734265734265734
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.655011655011655
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4805357725353263
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.42515355015355016
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.43416870212536746
            name: Cosine Map@100

Fine tuning poc1-30e

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-30-epochs")
# Run inference
sentences = [
    'After calling the "DataReader::read()" or "DataReader::take()"\noperations, accessing the data on the returned sequences is quite\neasy. The sequences API provides a **length()** operation returning\nthe number of elements in the collections. The application code just\nneeds to check this value and use the **[]** operator to access the\ncorresponding elements. Elements on the DDS data sequence should only\nbe accessed when the corresponding element on the SampleInfo sequence\nindicate that valid data is present. When using Data Sharing, it is\nalso important to check that the sample is valid (i.e, not replaced,\nrefer to DataReader and DataWriter history coupling for further\ninformation in this regard).',
    'What is the primary method described in the text for accessing data on returned sequences after calling "DataReader::read()" or "DataReader::take()" operations?',
    'What are the steps to install Fast DDS library, Python bindings, and Gen generation tool from sources in a Linux environment?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3427
cosine_accuracy@3 0.5291
cosine_accuracy@5 0.5758
cosine_accuracy@10 0.6643
cosine_precision@1 0.3427
cosine_precision@3 0.1764
cosine_precision@5 0.1152
cosine_precision@10 0.0664
cosine_recall@1 0.3427
cosine_recall@3 0.5291
cosine_recall@5 0.5758
cosine_recall@10 0.6643
cosine_ndcg@10 0.4999
cosine_mrr@10 0.4478
cosine_map@100 0.4573

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.5315
cosine_accuracy@5 0.5804
cosine_accuracy@10 0.655
cosine_precision@1 0.3333
cosine_precision@3 0.1772
cosine_precision@5 0.1161
cosine_precision@10 0.0655
cosine_recall@1 0.3333
cosine_recall@3 0.5315
cosine_recall@5 0.5804
cosine_recall@10 0.655
cosine_ndcg@10 0.4931
cosine_mrr@10 0.4415
cosine_map@100 0.4521

Information Retrieval

Metric Value
cosine_accuracy@1 0.331
cosine_accuracy@3 0.5385
cosine_accuracy@5 0.5734
cosine_accuracy@10 0.662
cosine_precision@1 0.331
cosine_precision@3 0.1795
cosine_precision@5 0.1147
cosine_precision@10 0.0662
cosine_recall@1 0.331
cosine_recall@3 0.5385
cosine_recall@5 0.5734
cosine_recall@10 0.662
cosine_ndcg@10 0.4946
cosine_mrr@10 0.4415
cosine_map@100 0.4518

Information Retrieval

Metric Value
cosine_accuracy@1 0.3287
cosine_accuracy@3 0.5291
cosine_accuracy@5 0.5781
cosine_accuracy@10 0.6643
cosine_precision@1 0.3287
cosine_precision@3 0.1764
cosine_precision@5 0.1156
cosine_precision@10 0.0664
cosine_recall@1 0.3287
cosine_recall@3 0.5291
cosine_recall@5 0.5781
cosine_recall@10 0.6643
cosine_ndcg@10 0.4917
cosine_mrr@10 0.4371
cosine_map@100 0.4465

Information Retrieval

Metric Value
cosine_accuracy@1 0.317
cosine_accuracy@3 0.5058
cosine_accuracy@5 0.5734
cosine_accuracy@10 0.655
cosine_precision@1 0.317
cosine_precision@3 0.1686
cosine_precision@5 0.1147
cosine_precision@10 0.0655
cosine_recall@1 0.317
cosine_recall@3 0.5058
cosine_recall@5 0.5734
cosine_recall@10 0.655
cosine_ndcg@10 0.4805
cosine_mrr@10 0.4252
cosine_map@100 0.4342

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 30
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 30
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.6639 10 5.6138 - - - - -
0.9959 15 - 0.3594 0.3735 0.3723 0.3161 0.3807
1.3278 20 4.9173 - - - - -
1.9917 30 3.7581 0.3874 0.4014 0.4026 0.3729 0.4032
2.6556 40 3.0018 - - - - -
2.9876 45 - 0.4031 0.4200 0.4212 0.3858 0.4223
3.3195 50 2.5035 - - - - -
3.9834 60 1.9031 0.4187 0.4303 0.4178 0.3958 0.4291
4.6473 70 1.474 - - - - -
4.9793 75 - 0.4293 0.4332 0.4318 0.4172 0.4401
5.3112 80 1.2801 - - - - -
5.9751 90 0.9577 0.4397 0.4382 0.4444 0.4275 0.4518
6.6390 100 0.7539 - - - - -
6.9710 105 - 0.4434 0.4414 0.4496 0.4262 0.4466
7.3029 110 0.694 - - - - -
7.9668 120 0.5147 0.4423 0.4488 0.4507 0.4358 0.4495
8.6307 130 0.4589 - - - - -
8.9627 135 - 0.4488 0.4575 0.4544 0.4407 0.4493
9.2946 140 0.3843 - - - - -
9.9585 150 0.3506 0.4521 0.4465 0.4559 0.4420 0.4485
10.6224 160 0.2723 - - - - -
10.9544 165 - 0.4497 0.4435 0.4499 0.4304 0.4453
11.2863 170 0.2555 - - - - -
11.9502 180 0.2077 0.4448 0.4472 0.4468 0.4287 0.4453
12.6141 190 0.1894 - - - - -
12.9461 195 - 0.4516 0.4463 0.4566 0.4336 0.452
13.2780 200 0.1725 - - - - -
13.9419 210 0.1395 0.4528 0.4520 0.4561 0.4333 0.4534
14.6058 220 0.155 - - - - -
14.9378 225 - 0.4461 0.4491 0.4527 0.4369 0.4517
15.2697 230 0.132 - - - - -
15.9336 240 0.1148 - - - - -
16.0 241 - 0.4482 0.4537 0.4540 0.4303 0.4538
16.5975 250 0.1061 - - - - -
16.9959 256 - 0.4464 0.4538 0.4551 0.4294 0.4577
17.2614 260 0.0961 - - - - -
17.9253 270 0.087 - - - - -
17.9917 271 - 0.4485 0.4483 0.4495 0.4326 0.4568
18.5892 280 0.1009 - - - - -
18.9876 286 - 0.4483 0.4517 0.4545 0.4396 0.4565
19.2531 290 0.0854 - - - - -
19.9170 300 0.073 - - - - -
19.9834 301 - 0.4473 0.4502 0.4521 0.4349 0.4548
20.5809 310 0.0726 - - - - -
20.9793 316 - 0.4466 0.4525 0.4538 0.4341 0.4583
21.2448 320 0.0747 - - - - -
21.9087 330 0.0621 - - - - -
21.9751 331 - 0.4441 0.4537 0.4534 0.4388 0.4564
22.5726 340 0.0682 - - - - -
22.9710 346 - 0.4454 0.4529 0.4544 0.4385 0.4589
23.2365 350 0.0612 - - - - -
23.9004 360 0.0546 - - - - -
23.9668 361 - 0.4464 0.4494 0.4551 0.4381 0.4567
24.5643 370 0.0599 - - - - -
24.9627 376 - 0.4465 0.4506 0.4553 0.4363 0.4567
25.2282 380 0.0591 - - - - -
25.8921 390 0.0562 - - - - -
25.9585 391 - 0.4454 0.4515 0.4532 0.4343 0.4575
26.5560 400 0.0623 - - - - -
26.9544 406 - 0.4452 0.4531 0.4544 0.4342 0.4573
27.2199 410 0.061 - - - - -
27.8838 420 0.053 - - - - -
27.9502 421 - 0.4454 0.4514 0.4533 0.4330 0.4573
28.5477 430 0.0564 - - - - -
28.9461 436 - 0.4465 0.4516 0.4533 0.4338 0.4562
29.2116 440 0.056 - - - - -
29.8755 450 0.0586 0.4465 0.4518 0.4521 0.4342 0.4573
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}