metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3853
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: |-
UDPv6TransportDescriptor
------------------------
sentences:
- >-
What is the primary purpose of the "Status" objects in the context of
entities?
- >-
What is the main concept that this piece of code demonstrates, and how
do the provided topology and QoS policy settings relate to it?
- >-
What is the primary characteristic of UDP transport in terms of
connection establishment?
- source_sentence: |-
With a fragment size of 64 kB, the Publisher has to send about 1100
fragments to send the whole file. A possible configuration for this
scenario could be:
sentences:
- >-
What is the likely reason why the Publisher needs to use "RELIABLE_
RELIABILITY_QOS" in this scenario?
- >-
What is the effect of defining a custom Metatraffic Unicast Locators on
the behavior of a DomainParticipant?
- >-
What is the primary function of the transport layer in DDS, as described
in the provided context?
- source_sentence: >-
+------------------------------------+---------------------------------------------------+------------+
| QosPolicy class |
Accessor/Mutator | Mutable |
|====================================|===================================================|============|
| RTPSEndpointQos |
"endpoint()" | No |
+------------------------------------+---------------------------------------------------+------------+
sentences:
- >-
What is the effect of setting "ON" as the DataSharingKind in the context
of data-sharing delivery?
- >-
What is the purpose of the RTPSEndpointQos class in the context of
DataWriter QoS policies?
- >-
What is the primary purpose of the RTPSEndpointQos policy in a DDS (Data
Distribution Service) system?
- source_sentence: |-
Note: When "non_blocking_send" is set to "true", send operations will
return immediately if the send buffer might get full, but no error
will be returned to the upper layer. This means that the application
will behave as if the packet is sent and lost.When set to "false",
send operations will block until the network buffer has space for
the packet.
sentences:
- What happens when "non_blocking_send" is set to "true" in TCP transport?
- >-
What is the purpose of the "<default_external_unicast_locators>" element
in the RTPS configuration?
- >-
What is the purpose of the "<enabled>" value in the DisablePositiveAcks
QoS policy?
- source_sentence: |-
After calling the "DataReader::read()" or "DataReader::take()"
operations, accessing the data on the returned sequences is quite
easy. The sequences API provides a **length()** operation returning
the number of elements in the collections. The application code just
needs to check this value and use the **[]** operator to access the
corresponding elements. Elements on the DDS data sequence should only
be accessed when the corresponding element on the SampleInfo sequence
indicate that valid data is present. When using Data Sharing, it is
also important to check that the sample is valid (i.e, not replaced,
refer to DataReader and DataWriter history coupling for further
information in this regard).
sentences:
- >-
What is the primary method described in the text for accessing data on
returned sequences after calling "DataReader::read()" or
"DataReader::take()" operations?
- >-
What is the primary advantage of using Shared Memory Transport (SHM)
compared to other network transports like UDP/TCP?
- >-
What are the steps to install Fast DDS library, Python bindings, and Gen
generation tool from sources in a Linux environment?
pipeline_tag: sentence-similarity
model-index:
- name: Fine tuning poc1-30e
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.34265734265734266
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5291375291375291
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5757575757575758
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6643356643356644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.34265734265734266
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17637917637917636
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11515151515151513
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06643356643356643
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.34265734265734266
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5291375291375291
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5757575757575758
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6643356643356644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4999219586168879
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44783734783734785
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45732757969458965
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.3333333333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5314685314685315
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5804195804195804
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.655011655011655
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3333333333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17715617715617715
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11608391608391608
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0655011655011655
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3333333333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5314685314685315
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5804195804195804
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.655011655011655
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4931410715247713
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44150664150664165
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4520914166409126
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.331002331002331
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5384615384615384
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5734265734265734
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.662004662004662
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.331002331002331
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1794871794871795
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11468531468531468
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0662004662004662
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.331002331002331
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5384615384615384
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5734265734265734
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.662004662004662
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4946456648216315
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4414687164687165
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4517532849343265
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.32867132867132864
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5291375291375291
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.578088578088578
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6643356643356644
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32867132867132864
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17637917637917636
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11561771561771561
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06643356643356643
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32867132867132864
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5291375291375291
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.578088578088578
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6643356643356644
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.491729303526411
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4370564620564619
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4465064100234966
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.317016317016317
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5058275058275058
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5734265734265734
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.655011655011655
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.317016317016317
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1686091686091686
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11468531468531468
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06550116550116548
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.317016317016317
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5058275058275058
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5734265734265734
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.655011655011655
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4805357725353263
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.42515355015355016
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.43416870212536746
name: Cosine Map@100
Fine tuning poc1-30e
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-30-epochs")
sentences = [
'After calling the "DataReader::read()" or "DataReader::take()"\noperations, accessing the data on the returned sequences is quite\neasy. The sequences API provides a **length()** operation returning\nthe number of elements in the collections. The application code just\nneeds to check this value and use the **[]** operator to access the\ncorresponding elements. Elements on the DDS data sequence should only\nbe accessed when the corresponding element on the SampleInfo sequence\nindicate that valid data is present. When using Data Sharing, it is\nalso important to check that the sample is valid (i.e, not replaced,\nrefer to DataReader and DataWriter history coupling for further\ninformation in this regard).',
'What is the primary method described in the text for accessing data on returned sequences after calling "DataReader::read()" or "DataReader::take()" operations?',
'What are the steps to install Fast DDS library, Python bindings, and Gen generation tool from sources in a Linux environment?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3427 |
cosine_accuracy@3 |
0.5291 |
cosine_accuracy@5 |
0.5758 |
cosine_accuracy@10 |
0.6643 |
cosine_precision@1 |
0.3427 |
cosine_precision@3 |
0.1764 |
cosine_precision@5 |
0.1152 |
cosine_precision@10 |
0.0664 |
cosine_recall@1 |
0.3427 |
cosine_recall@3 |
0.5291 |
cosine_recall@5 |
0.5758 |
cosine_recall@10 |
0.6643 |
cosine_ndcg@10 |
0.4999 |
cosine_mrr@10 |
0.4478 |
cosine_map@100 |
0.4573 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3333 |
cosine_accuracy@3 |
0.5315 |
cosine_accuracy@5 |
0.5804 |
cosine_accuracy@10 |
0.655 |
cosine_precision@1 |
0.3333 |
cosine_precision@3 |
0.1772 |
cosine_precision@5 |
0.1161 |
cosine_precision@10 |
0.0655 |
cosine_recall@1 |
0.3333 |
cosine_recall@3 |
0.5315 |
cosine_recall@5 |
0.5804 |
cosine_recall@10 |
0.655 |
cosine_ndcg@10 |
0.4931 |
cosine_mrr@10 |
0.4415 |
cosine_map@100 |
0.4521 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.331 |
cosine_accuracy@3 |
0.5385 |
cosine_accuracy@5 |
0.5734 |
cosine_accuracy@10 |
0.662 |
cosine_precision@1 |
0.331 |
cosine_precision@3 |
0.1795 |
cosine_precision@5 |
0.1147 |
cosine_precision@10 |
0.0662 |
cosine_recall@1 |
0.331 |
cosine_recall@3 |
0.5385 |
cosine_recall@5 |
0.5734 |
cosine_recall@10 |
0.662 |
cosine_ndcg@10 |
0.4946 |
cosine_mrr@10 |
0.4415 |
cosine_map@100 |
0.4518 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3287 |
cosine_accuracy@3 |
0.5291 |
cosine_accuracy@5 |
0.5781 |
cosine_accuracy@10 |
0.6643 |
cosine_precision@1 |
0.3287 |
cosine_precision@3 |
0.1764 |
cosine_precision@5 |
0.1156 |
cosine_precision@10 |
0.0664 |
cosine_recall@1 |
0.3287 |
cosine_recall@3 |
0.5291 |
cosine_recall@5 |
0.5781 |
cosine_recall@10 |
0.6643 |
cosine_ndcg@10 |
0.4917 |
cosine_mrr@10 |
0.4371 |
cosine_map@100 |
0.4465 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.317 |
cosine_accuracy@3 |
0.5058 |
cosine_accuracy@5 |
0.5734 |
cosine_accuracy@10 |
0.655 |
cosine_precision@1 |
0.317 |
cosine_precision@3 |
0.1686 |
cosine_precision@5 |
0.1147 |
cosine_precision@10 |
0.0655 |
cosine_recall@1 |
0.317 |
cosine_recall@3 |
0.5058 |
cosine_recall@5 |
0.5734 |
cosine_recall@10 |
0.655 |
cosine_ndcg@10 |
0.4805 |
cosine_mrr@10 |
0.4252 |
cosine_map@100 |
0.4342 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 30
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 30
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6639 |
10 |
5.6138 |
- |
- |
- |
- |
- |
0.9959 |
15 |
- |
0.3594 |
0.3735 |
0.3723 |
0.3161 |
0.3807 |
1.3278 |
20 |
4.9173 |
- |
- |
- |
- |
- |
1.9917 |
30 |
3.7581 |
0.3874 |
0.4014 |
0.4026 |
0.3729 |
0.4032 |
2.6556 |
40 |
3.0018 |
- |
- |
- |
- |
- |
2.9876 |
45 |
- |
0.4031 |
0.4200 |
0.4212 |
0.3858 |
0.4223 |
3.3195 |
50 |
2.5035 |
- |
- |
- |
- |
- |
3.9834 |
60 |
1.9031 |
0.4187 |
0.4303 |
0.4178 |
0.3958 |
0.4291 |
4.6473 |
70 |
1.474 |
- |
- |
- |
- |
- |
4.9793 |
75 |
- |
0.4293 |
0.4332 |
0.4318 |
0.4172 |
0.4401 |
5.3112 |
80 |
1.2801 |
- |
- |
- |
- |
- |
5.9751 |
90 |
0.9577 |
0.4397 |
0.4382 |
0.4444 |
0.4275 |
0.4518 |
6.6390 |
100 |
0.7539 |
- |
- |
- |
- |
- |
6.9710 |
105 |
- |
0.4434 |
0.4414 |
0.4496 |
0.4262 |
0.4466 |
7.3029 |
110 |
0.694 |
- |
- |
- |
- |
- |
7.9668 |
120 |
0.5147 |
0.4423 |
0.4488 |
0.4507 |
0.4358 |
0.4495 |
8.6307 |
130 |
0.4589 |
- |
- |
- |
- |
- |
8.9627 |
135 |
- |
0.4488 |
0.4575 |
0.4544 |
0.4407 |
0.4493 |
9.2946 |
140 |
0.3843 |
- |
- |
- |
- |
- |
9.9585 |
150 |
0.3506 |
0.4521 |
0.4465 |
0.4559 |
0.4420 |
0.4485 |
10.6224 |
160 |
0.2723 |
- |
- |
- |
- |
- |
10.9544 |
165 |
- |
0.4497 |
0.4435 |
0.4499 |
0.4304 |
0.4453 |
11.2863 |
170 |
0.2555 |
- |
- |
- |
- |
- |
11.9502 |
180 |
0.2077 |
0.4448 |
0.4472 |
0.4468 |
0.4287 |
0.4453 |
12.6141 |
190 |
0.1894 |
- |
- |
- |
- |
- |
12.9461 |
195 |
- |
0.4516 |
0.4463 |
0.4566 |
0.4336 |
0.452 |
13.2780 |
200 |
0.1725 |
- |
- |
- |
- |
- |
13.9419 |
210 |
0.1395 |
0.4528 |
0.4520 |
0.4561 |
0.4333 |
0.4534 |
14.6058 |
220 |
0.155 |
- |
- |
- |
- |
- |
14.9378 |
225 |
- |
0.4461 |
0.4491 |
0.4527 |
0.4369 |
0.4517 |
15.2697 |
230 |
0.132 |
- |
- |
- |
- |
- |
15.9336 |
240 |
0.1148 |
- |
- |
- |
- |
- |
16.0 |
241 |
- |
0.4482 |
0.4537 |
0.4540 |
0.4303 |
0.4538 |
16.5975 |
250 |
0.1061 |
- |
- |
- |
- |
- |
16.9959 |
256 |
- |
0.4464 |
0.4538 |
0.4551 |
0.4294 |
0.4577 |
17.2614 |
260 |
0.0961 |
- |
- |
- |
- |
- |
17.9253 |
270 |
0.087 |
- |
- |
- |
- |
- |
17.9917 |
271 |
- |
0.4485 |
0.4483 |
0.4495 |
0.4326 |
0.4568 |
18.5892 |
280 |
0.1009 |
- |
- |
- |
- |
- |
18.9876 |
286 |
- |
0.4483 |
0.4517 |
0.4545 |
0.4396 |
0.4565 |
19.2531 |
290 |
0.0854 |
- |
- |
- |
- |
- |
19.9170 |
300 |
0.073 |
- |
- |
- |
- |
- |
19.9834 |
301 |
- |
0.4473 |
0.4502 |
0.4521 |
0.4349 |
0.4548 |
20.5809 |
310 |
0.0726 |
- |
- |
- |
- |
- |
20.9793 |
316 |
- |
0.4466 |
0.4525 |
0.4538 |
0.4341 |
0.4583 |
21.2448 |
320 |
0.0747 |
- |
- |
- |
- |
- |
21.9087 |
330 |
0.0621 |
- |
- |
- |
- |
- |
21.9751 |
331 |
- |
0.4441 |
0.4537 |
0.4534 |
0.4388 |
0.4564 |
22.5726 |
340 |
0.0682 |
- |
- |
- |
- |
- |
22.9710 |
346 |
- |
0.4454 |
0.4529 |
0.4544 |
0.4385 |
0.4589 |
23.2365 |
350 |
0.0612 |
- |
- |
- |
- |
- |
23.9004 |
360 |
0.0546 |
- |
- |
- |
- |
- |
23.9668 |
361 |
- |
0.4464 |
0.4494 |
0.4551 |
0.4381 |
0.4567 |
24.5643 |
370 |
0.0599 |
- |
- |
- |
- |
- |
24.9627 |
376 |
- |
0.4465 |
0.4506 |
0.4553 |
0.4363 |
0.4567 |
25.2282 |
380 |
0.0591 |
- |
- |
- |
- |
- |
25.8921 |
390 |
0.0562 |
- |
- |
- |
- |
- |
25.9585 |
391 |
- |
0.4454 |
0.4515 |
0.4532 |
0.4343 |
0.4575 |
26.5560 |
400 |
0.0623 |
- |
- |
- |
- |
- |
26.9544 |
406 |
- |
0.4452 |
0.4531 |
0.4544 |
0.4342 |
0.4573 |
27.2199 |
410 |
0.061 |
- |
- |
- |
- |
- |
27.8838 |
420 |
0.053 |
- |
- |
- |
- |
- |
27.9502 |
421 |
- |
0.4454 |
0.4514 |
0.4533 |
0.4330 |
0.4573 |
28.5477 |
430 |
0.0564 |
- |
- |
- |
- |
- |
28.9461 |
436 |
- |
0.4465 |
0.4516 |
0.4533 |
0.4338 |
0.4562 |
29.2116 |
440 |
0.056 |
- |
- |
- |
- |
- |
29.8755 |
450 |
0.0586 |
0.4465 |
0.4518 |
0.4521 |
0.4342 |
0.4573 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}