calculito's picture
calculito/classify-ISIN-STEP7_binary
a4546e8 verified
metadata
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - trl
  - sft
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: classify-ISIN-STEP7_binary
    results: []

classify-ISIN-STEP7_binary

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • Accuracy Label gd622:null: 0.0
  • Accuracy Label Gd622:null: 1.0
  • Accuracy Label Gd622:yes: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label gd622:null Accuracy Label Gd622:null Accuracy Label Gd622:yes
0.2172 2.0833 100 0.1748 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0224 4.1667 200 0.0035 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0015 6.25 300 0.0014 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0098 8.3333 400 0.0007 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0094 10.4167 500 0.0004 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0003 12.5 600 0.0003 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0002 14.5833 700 0.0002 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0002 16.6667 800 0.0002 1.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0002 18.75 900 0.0002 1.0 1.0 1.0 1.0 0.0 1.0 1.0

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1