--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - trl - sft - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: classify-ISIN-STEP7_binary results: [] --- # classify-ISIN-STEP7_binary This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 - Accuracy Label gd622:null: 0.0 - Accuracy Label Gd622:null: 1.0 - Accuracy Label Gd622:yes: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label gd622:null | Accuracy Label Gd622:null | Accuracy Label Gd622:yes | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---:|:---------:|:------:|:--------------------------:|:-------------------------:|:------------------------:| | 0.2172 | 2.0833 | 100 | 0.1748 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0224 | 4.1667 | 200 | 0.0035 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0015 | 6.25 | 300 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0098 | 8.3333 | 400 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0094 | 10.4167 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0003 | 12.5 | 600 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0002 | 14.5833 | 700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0002 | 16.6667 | 800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | | 0.0002 | 18.75 | 900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1