|
--- |
|
language: |
|
- fr |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- allocine |
|
widget: |
|
- text: "Un film magnifique avec un duo d'acteurs excellent." |
|
- text: "Grosse déception pour ce thriller qui peine à convaincre." |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: camembert-allocine |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: allocine |
|
type: allocine |
|
config: allocine |
|
split: validation |
|
args: allocine |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.97535 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9749045558666326 |
|
- name: Precision |
|
type: precision |
|
value: 0.9722814498933902 |
|
- name: Recall |
|
type: recall |
|
value: 0.9775418538178848 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# camembert-allocine |
|
|
|
This model is a fine-tuned version of [camembert-base](https://huggingface.co./camembert-base) on the allocine dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0928 |
|
- Accuracy: 0.9754 |
|
- F1: 0.9749 |
|
- Precision: 0.9723 |
|
- Recall: 0.9775 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
| :-----------: | :---: | :---: | :-------------: | :------: | :----: | :-------: | :----: | |
|
| 0.1276 | 0.2 | 500 | 0.1187 | 0.9623 | 0.9622 | 0.9462 | 0.9787 | |
|
| 0.1013 | 0.4 | 1000 | 0.0917 | 0.9683 | 0.9675 | 0.9725 | 0.9625 | |
|
| 0.1254 | 0.6 | 1500 | 0.0889 | 0.9701 | 0.9698 | 0.9597 | 0.9801 | |
|
| 0.1004 | 0.8 | 2000 | 0.0792 | 0.9716 | 0.9709 | 0.9727 | 0.9691 | |
|
| 0.1149 | 1.0 | 2500 | 0.0762 | 0.9727 | 0.9723 | 0.9673 | 0.9773 | |
|
| 0.0574 | 1.2 | 3000 | 0.0849 | 0.9733 | 0.9729 | 0.9679 | 0.9780 | |
|
| 0.0394 | 1.4 | 3500 | 0.1026 | 0.9718 | 0.9715 | 0.9595 | 0.9839 | |
|
| 0.0401 | 1.6 | 4000 | 0.1065 | 0.9698 | 0.9697 | 0.9528 | 0.9872 | |
|
| 0.0458 | 1.8 | 4500 | 0.0834 | 0.9744 | 0.9739 | 0.9715 | 0.9764 | |
|
| 0.0554 | 2.0 | 5000 | 0.0873 | 0.9719 | 0.9717 | 0.9594 | 0.9844 | |
|
| 0.0516 | 2.2 | 5500 | 0.0928 | 0.9754 | 0.9749 | 0.9723 | 0.9775 | |
|
| 0.0355 | 2.4 | 6000 | 0.1017 | 0.9744 | 0.9741 | 0.9642 | 0.9842 | |
|
| 0.0227 | 2.6 | 6500 | 0.0983 | 0.9748 | 0.9743 | 0.9729 | 0.9757 | |
|
| 0.0359 | 2.8 | 7000 | 0.0990 | 0.9747 | 0.9743 | 0.9665 | 0.9823 | |
|
| 0.0384 | 3.0 | 7500 | 0.1001 | 0.9746 | 0.9742 | 0.9662 | 0.9824 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|