--- language: - fr license: mit tags: - generated_from_trainer datasets: - allocine widget: - text: "Un film magnifique avec un duo d'acteurs excellent." - text: "Grosse déception pour ce thriller qui peine à convaincre." metrics: - accuracy - f1 - precision - recall model-index: - name: camembert-allocine results: - task: name: Text Classification type: text-classification dataset: name: allocine type: allocine config: allocine split: validation args: allocine metrics: - name: Accuracy type: accuracy value: 0.97535 - name: F1 type: f1 value: 0.9749045558666326 - name: Precision type: precision value: 0.9722814498933902 - name: Recall type: recall value: 0.9775418538178848 --- # camembert-allocine This model is a fine-tuned version of [camembert-base](https://huggingface.co./camembert-base) on the allocine dataset. It achieves the following results on the evaluation set: - Loss: 0.0928 - Accuracy: 0.9754 - F1: 0.9749 - Precision: 0.9723 - Recall: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | | :-----------: | :---: | :---: | :-------------: | :------: | :----: | :-------: | :----: | | 0.1276 | 0.2 | 500 | 0.1187 | 0.9623 | 0.9622 | 0.9462 | 0.9787 | | 0.1013 | 0.4 | 1000 | 0.0917 | 0.9683 | 0.9675 | 0.9725 | 0.9625 | | 0.1254 | 0.6 | 1500 | 0.0889 | 0.9701 | 0.9698 | 0.9597 | 0.9801 | | 0.1004 | 0.8 | 2000 | 0.0792 | 0.9716 | 0.9709 | 0.9727 | 0.9691 | | 0.1149 | 1.0 | 2500 | 0.0762 | 0.9727 | 0.9723 | 0.9673 | 0.9773 | | 0.0574 | 1.2 | 3000 | 0.0849 | 0.9733 | 0.9729 | 0.9679 | 0.9780 | | 0.0394 | 1.4 | 3500 | 0.1026 | 0.9718 | 0.9715 | 0.9595 | 0.9839 | | 0.0401 | 1.6 | 4000 | 0.1065 | 0.9698 | 0.9697 | 0.9528 | 0.9872 | | 0.0458 | 1.8 | 4500 | 0.0834 | 0.9744 | 0.9739 | 0.9715 | 0.9764 | | 0.0554 | 2.0 | 5000 | 0.0873 | 0.9719 | 0.9717 | 0.9594 | 0.9844 | | 0.0516 | 2.2 | 5500 | 0.0928 | 0.9754 | 0.9749 | 0.9723 | 0.9775 | | 0.0355 | 2.4 | 6000 | 0.1017 | 0.9744 | 0.9741 | 0.9642 | 0.9842 | | 0.0227 | 2.6 | 6500 | 0.0983 | 0.9748 | 0.9743 | 0.9729 | 0.9757 | | 0.0359 | 2.8 | 7000 | 0.0990 | 0.9747 | 0.9743 | 0.9665 | 0.9823 | | 0.0384 | 3.0 | 7500 | 0.1001 | 0.9746 | 0.9742 | 0.9662 | 0.9824 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2