miosipof's picture
End of training
4824497 verified
|
raw
history blame
4.42 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: miosipof/whisper-small-ft-balbus-sep28k-v1.5
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.8111877154497023
          - name: Precision
            type: precision
            value:
              precision: 0.8133174791914387
          - name: Recall
            type: recall
            value:
              recall: 0.7365398420674802
          - name: F1
            type: f1
            value:
              f1: 0.7730269353927294

miosipof/whisper-small-ft-balbus-sep28k-v1.5

This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1083
  • Accuracy: {'accuracy': 0.8111877154497023}
  • Precision: {'precision': 0.8133174791914387}
  • Recall: {'recall': 0.7365398420674802}
  • F1: {'f1': 0.7730269353927294}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.1718 0.1253 100 0.1705 {'accuracy': 0.564243183954873} {'precision': 0.6190476190476191} {'recall': 0.00466618808327351} {'f1': 0.009262557890986818}
0.1683 0.2506 200 0.1653 {'accuracy': 0.6118771544970228} {'precision': 0.7677642980935875} {'recall': 0.15900933237616655} {'f1': 0.26345524829021705}
0.1595 0.3759 300 0.1494 {'accuracy': 0.6847383265434033} {'precision': 0.6486175115207373} {'recall': 0.6062455132806892} {'f1': 0.6267161410018552}
0.1299 0.5013 400 0.1266 {'accuracy': 0.7608900031338138} {'precision': 0.7008928571428571} {'recall': 0.7889447236180904} {'f1': 0.7423167848699763}
0.1174 0.6266 500 0.1140 {'accuracy': 0.7977123158884363} {'precision': 0.7800674409891345} {'recall': 0.747307968413496} {'f1': 0.7633363886342804}
0.1117 0.7519 600 0.1155 {'accuracy': 0.7919147602632404} {'precision': 0.7362281270252754} {'recall': 0.8155061019382628} {'f1': 0.773841961852861}
0.1072 0.8772 700 0.1074 {'accuracy': 0.8096208085239737} {'precision': 0.8282490597576264} {'recall': 0.7114142139267767} {'f1': 0.765398725622707}
0.106 1.0025 800 0.1078 {'accuracy': 0.8077405202130994} {'precision': 0.8175152749490835} {'recall': 0.7203876525484566} {'f1': 0.7658843732112193}
0.1001 1.1278 900 0.1079 {'accuracy': 0.810404261986838} {'precision': 0.8174858984689767} {'recall': 0.7282842785355348} {'f1': 0.7703113135914958}
0.092 1.2531 1000 0.1083 {'accuracy': 0.8111877154497023} {'precision': 0.8133174791914387} {'recall': 0.7365398420674802} {'f1': 0.7730269353927294}

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3