miosipof commited on
Commit
4824497
·
verified ·
1 Parent(s): 430b791

End of training

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-small
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - balbus-classifier
9
+ metrics:
10
+ - accuracy
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model-index:
15
+ - name: miosipof/whisper-small-ft-balbus-sep28k-v1.5
16
+ results:
17
+ - task:
18
+ name: Audio Classification
19
+ type: audio-classification
20
+ dataset:
21
+ name: Apple dataset
22
+ type: balbus-classifier
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value:
30
+ accuracy: 0.8111877154497023
31
+ - name: Precision
32
+ type: precision
33
+ value:
34
+ precision: 0.8133174791914387
35
+ - name: Recall
36
+ type: recall
37
+ value:
38
+ recall: 0.7365398420674802
39
+ - name: F1
40
+ type: f1
41
+ value:
42
+ f1: 0.7730269353927294
43
+ ---
44
+
45
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
46
+ should probably proofread and complete it, then remove this comment. -->
47
+
48
+ # miosipof/whisper-small-ft-balbus-sep28k-v1.5
49
+
50
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
51
+ It achieves the following results on the evaluation set:
52
+ - Loss: 0.1083
53
+ - Accuracy: {'accuracy': 0.8111877154497023}
54
+ - Precision: {'precision': 0.8133174791914387}
55
+ - Recall: {'recall': 0.7365398420674802}
56
+ - F1: {'f1': 0.7730269353927294}
57
+
58
+ ## Model description
59
+
60
+ More information needed
61
+
62
+ ## Intended uses & limitations
63
+
64
+ More information needed
65
+
66
+ ## Training and evaluation data
67
+
68
+ More information needed
69
+
70
+ ## Training procedure
71
+
72
+ ### Training hyperparameters
73
+
74
+ The following hyperparameters were used during training:
75
+ - learning_rate: 3e-06
76
+ - train_batch_size: 16
77
+ - eval_batch_size: 8
78
+ - seed: 42
79
+ - gradient_accumulation_steps: 2
80
+ - total_train_batch_size: 32
81
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
82
+ - lr_scheduler_type: linear
83
+ - lr_scheduler_warmup_ratio: 0.5
84
+ - training_steps: 1000
85
+ - mixed_precision_training: Native AMP
86
+
87
+ ### Training results
88
+
89
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
90
+ |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:---------------------------------:|:-------------------------------:|:----------------------------:|
91
+ | 0.1718 | 0.1253 | 100 | 0.1705 | {'accuracy': 0.564243183954873} | {'precision': 0.6190476190476191} | {'recall': 0.00466618808327351} | {'f1': 0.009262557890986818} |
92
+ | 0.1683 | 0.2506 | 200 | 0.1653 | {'accuracy': 0.6118771544970228} | {'precision': 0.7677642980935875} | {'recall': 0.15900933237616655} | {'f1': 0.26345524829021705} |
93
+ | 0.1595 | 0.3759 | 300 | 0.1494 | {'accuracy': 0.6847383265434033} | {'precision': 0.6486175115207373} | {'recall': 0.6062455132806892} | {'f1': 0.6267161410018552} |
94
+ | 0.1299 | 0.5013 | 400 | 0.1266 | {'accuracy': 0.7608900031338138} | {'precision': 0.7008928571428571} | {'recall': 0.7889447236180904} | {'f1': 0.7423167848699763} |
95
+ | 0.1174 | 0.6266 | 500 | 0.1140 | {'accuracy': 0.7977123158884363} | {'precision': 0.7800674409891345} | {'recall': 0.747307968413496} | {'f1': 0.7633363886342804} |
96
+ | 0.1117 | 0.7519 | 600 | 0.1155 | {'accuracy': 0.7919147602632404} | {'precision': 0.7362281270252754} | {'recall': 0.8155061019382628} | {'f1': 0.773841961852861} |
97
+ | 0.1072 | 0.8772 | 700 | 0.1074 | {'accuracy': 0.8096208085239737} | {'precision': 0.8282490597576264} | {'recall': 0.7114142139267767} | {'f1': 0.765398725622707} |
98
+ | 0.106 | 1.0025 | 800 | 0.1078 | {'accuracy': 0.8077405202130994} | {'precision': 0.8175152749490835} | {'recall': 0.7203876525484566} | {'f1': 0.7658843732112193} |
99
+ | 0.1001 | 1.1278 | 900 | 0.1079 | {'accuracy': 0.810404261986838} | {'precision': 0.8174858984689767} | {'recall': 0.7282842785355348} | {'f1': 0.7703113135914958} |
100
+ | 0.092 | 1.2531 | 1000 | 0.1083 | {'accuracy': 0.8111877154497023} | {'precision': 0.8133174791914387} | {'recall': 0.7365398420674802} | {'f1': 0.7730269353927294} |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.45.2
106
+ - Pytorch 2.2.0
107
+ - Datasets 3.2.0
108
+ - Tokenizers 0.20.3