End of training
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: openai/whisper-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- balbus-classifier
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: miosipof/whisper-small-ft-balbus-sep28k-v1.5
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Audio Classification
|
19 |
+
type: audio-classification
|
20 |
+
dataset:
|
21 |
+
name: Apple dataset
|
22 |
+
type: balbus-classifier
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value:
|
30 |
+
accuracy: 0.8111877154497023
|
31 |
+
- name: Precision
|
32 |
+
type: precision
|
33 |
+
value:
|
34 |
+
precision: 0.8133174791914387
|
35 |
+
- name: Recall
|
36 |
+
type: recall
|
37 |
+
value:
|
38 |
+
recall: 0.7365398420674802
|
39 |
+
- name: F1
|
40 |
+
type: f1
|
41 |
+
value:
|
42 |
+
f1: 0.7730269353927294
|
43 |
+
---
|
44 |
+
|
45 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
46 |
+
should probably proofread and complete it, then remove this comment. -->
|
47 |
+
|
48 |
+
# miosipof/whisper-small-ft-balbus-sep28k-v1.5
|
49 |
+
|
50 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
51 |
+
It achieves the following results on the evaluation set:
|
52 |
+
- Loss: 0.1083
|
53 |
+
- Accuracy: {'accuracy': 0.8111877154497023}
|
54 |
+
- Precision: {'precision': 0.8133174791914387}
|
55 |
+
- Recall: {'recall': 0.7365398420674802}
|
56 |
+
- F1: {'f1': 0.7730269353927294}
|
57 |
+
|
58 |
+
## Model description
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Intended uses & limitations
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training and evaluation data
|
67 |
+
|
68 |
+
More information needed
|
69 |
+
|
70 |
+
## Training procedure
|
71 |
+
|
72 |
+
### Training hyperparameters
|
73 |
+
|
74 |
+
The following hyperparameters were used during training:
|
75 |
+
- learning_rate: 3e-06
|
76 |
+
- train_batch_size: 16
|
77 |
+
- eval_batch_size: 8
|
78 |
+
- seed: 42
|
79 |
+
- gradient_accumulation_steps: 2
|
80 |
+
- total_train_batch_size: 32
|
81 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
82 |
+
- lr_scheduler_type: linear
|
83 |
+
- lr_scheduler_warmup_ratio: 0.5
|
84 |
+
- training_steps: 1000
|
85 |
+
- mixed_precision_training: Native AMP
|
86 |
+
|
87 |
+
### Training results
|
88 |
+
|
89 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
90 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:---------------------------------:|:-------------------------------:|:----------------------------:|
|
91 |
+
| 0.1718 | 0.1253 | 100 | 0.1705 | {'accuracy': 0.564243183954873} | {'precision': 0.6190476190476191} | {'recall': 0.00466618808327351} | {'f1': 0.009262557890986818} |
|
92 |
+
| 0.1683 | 0.2506 | 200 | 0.1653 | {'accuracy': 0.6118771544970228} | {'precision': 0.7677642980935875} | {'recall': 0.15900933237616655} | {'f1': 0.26345524829021705} |
|
93 |
+
| 0.1595 | 0.3759 | 300 | 0.1494 | {'accuracy': 0.6847383265434033} | {'precision': 0.6486175115207373} | {'recall': 0.6062455132806892} | {'f1': 0.6267161410018552} |
|
94 |
+
| 0.1299 | 0.5013 | 400 | 0.1266 | {'accuracy': 0.7608900031338138} | {'precision': 0.7008928571428571} | {'recall': 0.7889447236180904} | {'f1': 0.7423167848699763} |
|
95 |
+
| 0.1174 | 0.6266 | 500 | 0.1140 | {'accuracy': 0.7977123158884363} | {'precision': 0.7800674409891345} | {'recall': 0.747307968413496} | {'f1': 0.7633363886342804} |
|
96 |
+
| 0.1117 | 0.7519 | 600 | 0.1155 | {'accuracy': 0.7919147602632404} | {'precision': 0.7362281270252754} | {'recall': 0.8155061019382628} | {'f1': 0.773841961852861} |
|
97 |
+
| 0.1072 | 0.8772 | 700 | 0.1074 | {'accuracy': 0.8096208085239737} | {'precision': 0.8282490597576264} | {'recall': 0.7114142139267767} | {'f1': 0.765398725622707} |
|
98 |
+
| 0.106 | 1.0025 | 800 | 0.1078 | {'accuracy': 0.8077405202130994} | {'precision': 0.8175152749490835} | {'recall': 0.7203876525484566} | {'f1': 0.7658843732112193} |
|
99 |
+
| 0.1001 | 1.1278 | 900 | 0.1079 | {'accuracy': 0.810404261986838} | {'precision': 0.8174858984689767} | {'recall': 0.7282842785355348} | {'f1': 0.7703113135914958} |
|
100 |
+
| 0.092 | 1.2531 | 1000 | 0.1083 | {'accuracy': 0.8111877154497023} | {'precision': 0.8133174791914387} | {'recall': 0.7365398420674802} | {'f1': 0.7730269353927294} |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.45.2
|
106 |
+
- Pytorch 2.2.0
|
107 |
+
- Datasets 3.2.0
|
108 |
+
- Tokenizers 0.20.3
|