metadata
base_model: gpt2
library_name: peft
license: mit
metrics:
- accuracy
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: gpt2-sst2-sentiment-classifier-lora
results: []
gpt2-sst2-sentiment-classifier-lora
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2636
- Accuracy: 0.9083
- F1: 0.9111
- Precision: 0.8991
- Recall: 0.9234
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.3138 | 1.0 | 4210 | 0.2550 | 0.9014 | 0.9034 | 0.9013 | 0.9054 |
0.2597 | 2.0 | 8420 | 0.2666 | 0.9014 | 0.9061 | 0.8792 | 0.9347 |
0.2436 | 3.0 | 12630 | 0.2636 | 0.9083 | 0.9111 | 0.8991 | 0.9234 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1