bert-sst2-sentiment-lora

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2664
  • Accuracy: 0.9094
  • F1: 0.9123
  • Precision: 0.8993
  • Recall: 0.9257

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3043 1.0 4210 0.2483 0.9128 0.9148 0.9107 0.9189
0.2494 2.0 8420 0.2577 0.9083 0.9109 0.9009 0.9212
0.1861 3.0 12630 0.2664 0.9094 0.9123 0.8993 0.9257

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for asm3515/bert-sst2-sentiment-lora

Adapter
(59)
this model