whisper-base-vi-2 / README.md
arun100's picture
End of training
dc91723 verified
metadata
license: apache-2.0
base_model: arun100/whisper-base-vi-1
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Vietnamese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs vi_vn
          type: google/fleurs
          config: vi_vn
          split: test
          args: vi_vn
        metrics:
          - name: Wer
            type: wer
            value: 31.03382013835511

Whisper Base Vietnamese

This model is a fine-tuned version of arun100/whisper-base-vi-1 on the google/fleurs vi_vn dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6949
  • Wer: 31.0338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5823 43.0 500 0.7964 37.8978
0.3312 86.0 1000 0.6997 33.7125
0.2009 130.0 1500 0.6784 32.7479
0.1271 173.0 2000 0.6760 31.9985
0.0815 217.0 2500 0.6799 31.3028
0.0561 260.0 3000 0.6851 31.2337
0.0438 304.0 3500 0.6896 31.7256
0.0367 347.0 4000 0.6928 31.5949
0.0331 391.0 4500 0.6949 31.0338
0.0317 434.0 5000 0.6957 31.0453

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0