--- license: apache-2.0 base_model: arun100/whisper-base-vi-1 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Vietnamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs vi_vn type: google/fleurs config: vi_vn split: test args: vi_vn metrics: - name: Wer type: wer value: 31.03382013835511 --- # Whisper Base Vietnamese This model is a fine-tuned version of [arun100/whisper-base-vi-1](https://huggingface.co./arun100/whisper-base-vi-1) on the google/fleurs vi_vn dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Wer: 31.0338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5823 | 43.0 | 500 | 0.7964 | 37.8978 | | 0.3312 | 86.0 | 1000 | 0.6997 | 33.7125 | | 0.2009 | 130.0 | 1500 | 0.6784 | 32.7479 | | 0.1271 | 173.0 | 2000 | 0.6760 | 31.9985 | | 0.0815 | 217.0 | 2500 | 0.6799 | 31.3028 | | 0.0561 | 260.0 | 3000 | 0.6851 | 31.2337 | | 0.0438 | 304.0 | 3500 | 0.6896 | 31.7256 | | 0.0367 | 347.0 | 4000 | 0.6928 | 31.5949 | | 0.0331 | 391.0 | 4500 | 0.6949 | 31.0338 | | 0.0317 | 434.0 | 5000 | 0.6957 | 31.0453 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0