arindamatcalgm's picture
update model card README.md
773eb25
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: w266_model3_BERT_CNN
    results: []

w266_model3_BERT_CNN

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7935
  • Accuracy: {'accuracy': 0.67}
  • F1: {'f1': 0.6539863523155215}
  • Precision: {'precision': 0.6655888523241464}
  • Recall: {'recall': 0.67}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7881 1.0 1923 0.8177 {'accuracy': 0.638} {'f1': 0.6219209356584174} {'precision': 0.6325213408748697} {'recall': 0.638}
0.649 2.0 3846 0.8257 {'accuracy': 0.669} {'f1': 0.6701535233107099} {'precision': 0.672307962349643} {'recall': 0.669}
0.4771 3.0 5769 0.8922 {'accuracy': 0.676} {'f1': 0.6778795418743319} {'precision': 0.6805694646691987} {'recall': 0.676}
0.3403 4.0 7692 1.4285 {'accuracy': 0.669} {'f1': 0.666176554548987} {'precision': 0.6653390405441227} {'recall': 0.669}
0.2088 5.0 9615 1.7417 {'accuracy': 0.67} {'f1': 0.6716636513157895} {'precision': 0.6752339933799478} {'recall': 0.67}

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3