arindamatcalgm
commited on
Commit
•
773eb25
1
Parent(s):
7ead4a4
update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: {'accuracy': 0.
|
25 |
-
- F1: {'f1': 0.
|
26 |
-
- Precision: {'precision': 0.
|
27 |
-
- Recall: {'recall': 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
- Transformers 4.31.0
|
68 |
- Pytorch 2.0.1+cu118
|
69 |
-
- Datasets 2.14.
|
70 |
- Tokenizers 0.13.3
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.7935
|
24 |
+
- Accuracy: {'accuracy': 0.67}
|
25 |
+
- F1: {'f1': 0.6539863523155215}
|
26 |
+
- Precision: {'precision': 0.6655888523241464}
|
27 |
+
- Recall: {'recall': 0.67}
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:|
|
58 |
+
| 0.7881 | 1.0 | 1923 | 0.8177 | {'accuracy': 0.638} | {'f1': 0.6219209356584174} | {'precision': 0.6325213408748697} | {'recall': 0.638} |
|
59 |
+
| 0.649 | 2.0 | 3846 | 0.8257 | {'accuracy': 0.669} | {'f1': 0.6701535233107099} | {'precision': 0.672307962349643} | {'recall': 0.669} |
|
60 |
+
| 0.4771 | 3.0 | 5769 | 0.8922 | {'accuracy': 0.676} | {'f1': 0.6778795418743319} | {'precision': 0.6805694646691987} | {'recall': 0.676} |
|
61 |
+
| 0.3403 | 4.0 | 7692 | 1.4285 | {'accuracy': 0.669} | {'f1': 0.666176554548987} | {'precision': 0.6653390405441227} | {'recall': 0.669} |
|
62 |
+
| 0.2088 | 5.0 | 9615 | 1.7417 | {'accuracy': 0.67} | {'f1': 0.6716636513157895} | {'precision': 0.6752339933799478} | {'recall': 0.67} |
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
- Transformers 4.31.0
|
68 |
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.14.3
|
70 |
- Tokenizers 0.13.3
|