arindamatcalgm commited on
Commit
773eb25
1 Parent(s): 7ead4a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.8379
24
- - Accuracy: {'accuracy': 0.638}
25
- - F1: {'f1': 0.6347028754401022}
26
- - Precision: {'precision': 0.6330789574164506}
27
- - Recall: {'recall': 0.638}
28
 
29
  ## Model description
30
 
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:|
58
- | No log | 1.0 | 125 | 0.9131 | {'accuracy': 0.575} | {'f1': 0.5238639982308713} | {'precision': 0.5763958598091251} | {'recall': 0.575} |
59
- | No log | 2.0 | 250 | 0.8958 | {'accuracy': 0.594} | {'f1': 0.5872686350677672} | {'precision': 0.5839805403784284} | {'recall': 0.594} |
60
- | No log | 3.0 | 375 | 1.0090 | {'accuracy': 0.579} | {'f1': 0.5805384614353013} | {'precision': 0.5937972757207018} | {'recall': 0.579} |
61
- | 0.6603 | 4.0 | 500 | 1.2606 | {'accuracy': 0.576} | {'f1': 0.5817117729696419} | {'precision': 0.5920616341004294} | {'recall': 0.576} |
62
- | 0.6603 | 5.0 | 625 | 1.4795 | {'accuracy': 0.577} | {'f1': 0.5838498885025925} | {'precision': 0.6094074383728622} | {'recall': 0.577} |
63
 
64
 
65
  ### Framework versions
66
 
67
  - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
- - Datasets 2.14.2
70
  - Tokenizers 0.13.3
 
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.7935
24
+ - Accuracy: {'accuracy': 0.67}
25
+ - F1: {'f1': 0.6539863523155215}
26
+ - Precision: {'precision': 0.6655888523241464}
27
+ - Recall: {'recall': 0.67}
28
 
29
  ## Model description
30
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:|
58
+ | 0.7881 | 1.0 | 1923 | 0.8177 | {'accuracy': 0.638} | {'f1': 0.6219209356584174} | {'precision': 0.6325213408748697} | {'recall': 0.638} |
59
+ | 0.649 | 2.0 | 3846 | 0.8257 | {'accuracy': 0.669} | {'f1': 0.6701535233107099} | {'precision': 0.672307962349643} | {'recall': 0.669} |
60
+ | 0.4771 | 3.0 | 5769 | 0.8922 | {'accuracy': 0.676} | {'f1': 0.6778795418743319} | {'precision': 0.6805694646691987} | {'recall': 0.676} |
61
+ | 0.3403 | 4.0 | 7692 | 1.4285 | {'accuracy': 0.669} | {'f1': 0.666176554548987} | {'precision': 0.6653390405441227} | {'recall': 0.669} |
62
+ | 0.2088 | 5.0 | 9615 | 1.7417 | {'accuracy': 0.67} | {'f1': 0.6716636513157895} | {'precision': 0.6752339933799478} | {'recall': 0.67} |
63
 
64
 
65
  ### Framework versions
66
 
67
  - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
+ - Datasets 2.14.3
70
  - Tokenizers 0.13.3