m2m100_418M_ft_ru-kbd_50K

This model is a fine-tuned version of facebook/m2m100_1.2B on the anzorq/ru-kbd dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Eval

  predict_bleu               =    23.3736
  predict_gen_len            =    16.8114
  predict_loss               =     0.9729
  predict_runtime            = 0:03:29.00
  predict_samples            =       1034
  predict_samples_per_second =      4.947
  predict_steps_per_second   =      0.211

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0

Inference

pip install transformers sentencepiece
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model_path = "anzorq/m2m100_1.2B_ft_ru-kbd_50K"
tgt_lang="zu"

tokenizer = AutoTokenizer.from_pretrained('facebook/m2m100_1.2B')
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
model.to('cuda')

def translate(text, num_beams=4, num_return_sequences=4):
    inputs = tokenizer(text, return_tensors="pt")
    inputs.to('cuda')
    num_return_sequences = min(num_return_sequences, num_beams)

    translated_tokens = model.generate(
        **inputs,
        forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
        num_beams=num_beams,
        num_return_sequences=num_return_sequences
    )

    translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
    return translations
Downloads last month
28
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for anzorq/m2m100_1.2B_ft_ru-kbd_50K

Finetuned
(15)
this model

Dataset used to train anzorq/m2m100_1.2B_ft_ru-kbd_50K