mistral-sft-v3 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
603bf35 verified
|
raw
history blame
3.96 kB
metadata
license: apache-2.0
library_name: transformers
datasets:
  - andysalerno/ansalern-nectar-inputoutput
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: mistral-sft-v3
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.35
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.23
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.4
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 48.49
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
          name: Open LLM Leaderboard

This is mistralai/Mistral-7B-v0.1, but with the special tokens added for ChatML, and then lightly finetuned with sft using a ChatML formatted dataset: andysalerno/ansalern-nectar-inputoutput

The training was very light, so while this model correctly follows ChatML formatting, it is not intended to be a chat model.

Rather, it is intended to be a base for further fine-tuning models that will use ChatML.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.93
AI2 Reasoning Challenge (25-Shot) 61.35
HellaSwag (10-Shot) 82.23
MMLU (5-Shot) 63.40
TruthfulQA (0-shot) 48.49
Winogrande (5-shot) 77.66
GSM8k (5-shot) 32.45