File size: 3,957 Bytes
cb74e0d
7ea916b
603bf35
48beb1e
 
603bf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb74e0d
 
fe349da
cb74e0d
fe349da
cb74e0d
603bf35
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
library_name: transformers
datasets:
- andysalerno/ansalern-nectar-inputoutput
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-sft-v3
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 61.35
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.23
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.4
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 48.49
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.66
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 32.45
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=andysalerno/mistral-sft-v3
      name: Open LLM Leaderboard
---

This is [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1), but with the special tokens added for ChatML, and then lightly finetuned with sft using a ChatML formatted dataset: [andysalerno/ansalern-nectar-inputoutput](https://huggingface.co./datasets/andysalerno/ansalern-nectar-inputoutput)

The training was very light, so while this model correctly follows ChatML formatting, it is not intended to be a chat model.

Rather, it is intended to be a base for further fine-tuning models that will use ChatML.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_andysalerno__mistral-sft-v3)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |60.93|
|AI2 Reasoning Challenge (25-Shot)|61.35|
|HellaSwag (10-Shot)              |82.23|
|MMLU (5-Shot)                    |63.40|
|TruthfulQA (0-shot)              |48.49|
|Winogrande (5-shot)              |77.66|
|GSM8k (5-shot)                   |32.45|