Phi3mash1-17B-pass / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
c34e16b verified
|
raw
history blame
4.7 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
base_model:
- Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
- Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
model-index:
- name: Phi3mash1-17B-pass
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 18.84
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 45.25
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.28
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.84
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.88
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
name: Open LLM Leaderboard
---
# Phi3-19B-pass
Phi3-19B-pass is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO](https://huggingface.co./Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO)
* [Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO](https://huggingface.co./Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
layer_range: [0, 24]
- sources:
- model: Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
layer_range: [8, 32]
merge_method: passthrough
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "allknowingroger/Phi3-19B-pass"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_allknowingroger__Phi3mash1-17B-pass)
| Metric |Value|
|-------------------|----:|
|Avg. |21.35|
|IFEval (0-Shot) |18.84|
|BBH (3-Shot) |45.25|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot) | 9.28|
|MuSR (0-shot) |14.84|
|MMLU-PRO (5-shot) |39.88|