Phi3mash1-17B-pass / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
c34e16b verified
|
raw
history blame
4.7 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
base_model:
  - Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
  - Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
model-index:
  - name: Phi3mash1-17B-pass
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 18.84
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 45.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.28
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.84
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 39.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=allknowingroger/Phi3mash1-17B-pass
          name: Open LLM Leaderboard

Phi3-19B-pass

Phi3-19B-pass is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
    - model: Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
      layer_range: [0, 24]
  - sources:
    - model: Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO
      layer_range: [8, 32]
merge_method: passthrough
dtype: float16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "allknowingroger/Phi3-19B-pass"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.35
IFEval (0-Shot) 18.84
BBH (3-Shot) 45.25
MATH Lvl 5 (4-Shot) 0.00
GPQA (0-shot) 9.28
MuSR (0-shot) 14.84
MMLU-PRO (5-shot) 39.88