|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: reddit_summarization_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# reddit_summarization_model |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9410 |
|
- Rouge1: 0.4169 |
|
- Rouge2: 0.163 |
|
- Rougel: 0.276 |
|
- Rougelsum: 0.3001 |
|
- Gen Len: 61.6276 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 3 |
|
- total_train_batch_size: 9 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 1.9905 | 1.0 | 972 | 1.8412 | 0.412 | 0.1593 | 0.2725 | 0.2965 | 61.7025 | |
|
| 1.5293 | 2.0 | 1944 | 1.8022 | 0.4162 | 0.1634 | 0.2766 | 0.2998 | 61.6673 | |
|
| 1.2934 | 3.0 | 2916 | 1.8352 | 0.4194 | 0.1641 | 0.2789 | 0.3019 | 61.548 | |
|
| 1.1481 | 4.0 | 3888 | 1.8898 | 0.415 | 0.1623 | 0.2753 | 0.2985 | 61.5825 | |
|
| 1.04 | 5.0 | 4860 | 1.9410 | 0.4169 | 0.163 | 0.276 | 0.3001 | 61.6276 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|