alexdg19's picture
End of training
eac6307
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: reddit_summarization_model
    results: []

reddit_summarization_model

This model is a fine-tuned version of facebook/bart-large-xsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9410
  • Rouge1: 0.4169
  • Rouge2: 0.163
  • Rougel: 0.276
  • Rougelsum: 0.3001
  • Gen Len: 61.6276

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9905 1.0 972 1.8412 0.412 0.1593 0.2725 0.2965 61.7025
1.5293 2.0 1944 1.8022 0.4162 0.1634 0.2766 0.2998 61.6673
1.2934 3.0 2916 1.8352 0.4194 0.1641 0.2789 0.3019 61.548
1.1481 4.0 3888 1.8898 0.415 0.1623 0.2753 0.2985 61.5825
1.04 5.0 4860 1.9410 0.4169 0.163 0.276 0.3001 61.6276

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0