|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: PTS-Bart-Large-CNN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PTS-Bart-Large-CNN |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1442 |
|
- Rouge1: 0.6591 |
|
- Rouge2: 0.449 |
|
- Rougel: 0.5635 |
|
- Rougelsum: 0.5633 |
|
- Gen Len: 78.7977 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 220 | 0.8235 | 0.6279 | 0.4019 | 0.5268 | 0.5267 | 82.8295 | |
|
| No log | 2.0 | 440 | 0.8053 | 0.6461 | 0.4278 | 0.5486 | 0.5484 | 78.6318 | |
|
| 0.7147 | 3.0 | 660 | 0.8889 | 0.6471 | 0.4324 | 0.5491 | 0.5488 | 79.4432 | |
|
| 0.7147 | 4.0 | 880 | 0.9679 | 0.6533 | 0.4391 | 0.5538 | 0.5534 | 80.2023 | |
|
| 0.2566 | 5.0 | 1100 | 0.9734 | 0.6563 | 0.4422 | 0.5574 | 0.5571 | 78.9727 | |
|
| 0.2566 | 6.0 | 1320 | 1.0504 | 0.6538 | 0.4436 | 0.559 | 0.5585 | 78.5682 | |
|
| 0.1136 | 7.0 | 1540 | 1.1172 | 0.6591 | 0.4474 | 0.5646 | 0.5647 | 78.6068 | |
|
| 0.1136 | 8.0 | 1760 | 1.1442 | 0.6591 | 0.449 | 0.5635 | 0.5633 | 78.7977 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|