metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: PTS-Bart-Large-CNN
results: []
PTS-Bart-Large-CNN
This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1442
- Rouge1: 0.6591
- Rouge2: 0.449
- Rougel: 0.5635
- Rougelsum: 0.5633
- Gen Len: 78.7977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 220 | 0.8235 | 0.6279 | 0.4019 | 0.5268 | 0.5267 | 82.8295 |
No log | 2.0 | 440 | 0.8053 | 0.6461 | 0.4278 | 0.5486 | 0.5484 | 78.6318 |
0.7147 | 3.0 | 660 | 0.8889 | 0.6471 | 0.4324 | 0.5491 | 0.5488 | 79.4432 |
0.7147 | 4.0 | 880 | 0.9679 | 0.6533 | 0.4391 | 0.5538 | 0.5534 | 80.2023 |
0.2566 | 5.0 | 1100 | 0.9734 | 0.6563 | 0.4422 | 0.5574 | 0.5571 | 78.9727 |
0.2566 | 6.0 | 1320 | 1.0504 | 0.6538 | 0.4436 | 0.559 | 0.5585 | 78.5682 |
0.1136 | 7.0 | 1540 | 1.1172 | 0.6591 | 0.4474 | 0.5646 | 0.5647 | 78.6068 |
0.1136 | 8.0 | 1760 | 1.1442 | 0.6591 | 0.449 | 0.5635 | 0.5633 | 78.7977 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1