adriansanz's picture
Add new SentenceTransformer model.
cdab7fe verified
|
raw
history blame
30.6 kB
metadata
base_model: cross-encoder/ms-marco-MiniLM-L-4-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4173
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Aquelles persones (físiques o jurídiques) que es disposin a exercir una de
      les següents activitats: ... Han de comunicar-ho a l'Ajuntament prèviament
      a la data prevista de la seva obertura.
    sentences:
      - >-
        Quin és el benefici que es pretén obtenir amb aquests ajuts econòmics
        per a les empreses d'hostaleria i restauració?
      - >-
        Quin és el benefici del sistema de teleassistència per a les persones
        que viuen amb altres persones amb discapacitat?
      - >-
        Quin és el propòsit de la comunicació prèvia d'una activitat recreativa
        o un espectacle públic?
  - source_sentence: >-
      Les persones titulars d’activitats que generin residus comercials o
      industrials assimilables als municipals, vindran obligats a acreditar
      davant l’Ajuntament que tenen contractat un gestor autoritzat per la
      recollida, tractament i eliminació dels residus que produeixi l’activitat
      corresponent.
    sentences:
      - >-
        Quin és el paper de l'Ajuntament en l'acreditació de recollida de
        residus?
      - Quin és el benefici de les activitats d'animació socio-cultural?
      - Quin és el benefici de l'ajut per a la creació de noves empreses?
  - source_sentence: >-
      Modificació de sol·licitud de permís d'ocupació de la via pública per
      filmacions, rodatges o sessions fotogràfiques.
    sentences:
      - Quin és el grau de discapacitat mínim per a rebre l'ajut de 300 anuals?
      - >-
        Quin és el requisit per a la constitució o modificació del règim de
        propietat horitzontal?
      - Quin és el tipus de permís que es modifica?
  - source_sentence: >-
      El beneficiari és l'encarregat de complir les condicions de la subvenció i
      de presentar els informes de seguiment del projecte.
    sentences:
      - Quin és el paper del beneficiari en el procés de subvencions?
      - >-
        Quin és el càlcul dels interessos de demora en el fraccionament i
        l'ajornament?
      - >-
        Quin és el període de temps en què es poden efectuar les despeses
        mèdiques per a rebre l'ajuda?
  - source_sentence: >-
      Aquest tràmit permet sol·licitar la llicència per a realitzar obres
      d'excavació a la via pública per a la instal·lació o reparació
      d'infraestructures de serveis i subministraments.
    sentences:
      - Quin és el paper de la via pública en aquest tràmit?
      - Quin és el requisit principal per obtenir el certificat?
      - >-
        Quin és l'objectiu de presentar una denúncia per presumpta infracció
        urbanística?
model-index:
  - name: SentenceTransformer based on cross-encoder/ms-marco-MiniLM-L-4-v2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.03879310344827586
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.08836206896551724
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.12284482758620689
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.1875
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.03879310344827586
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.029454022988505746
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.024568965517241383
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.01875
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.03879310344827586
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08836206896551724
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.12284482758620689
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1875
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.10242929123982092
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.0765787493158183
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.09057915519577017
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.03879310344827586
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.08836206896551724
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.12284482758620689
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.1875
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.03879310344827586
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.029454022988505746
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.024568965517241383
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.01875
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.03879310344827586
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08836206896551724
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.12284482758620689
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1875
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.10242929123982092
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.0765787493158183
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.09057915519577017
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.03879310344827586
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.08405172413793104
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.12931034482758622
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.1853448275862069
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.03879310344827586
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.028017241379310345
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.02586206896551724
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.01853448275862069
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.03879310344827586
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08405172413793104
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.12931034482758622
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1853448275862069
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.10210354316803219
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.07668821839080461
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08986051867751395
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.034482758620689655
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.09482758620689655
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.1271551724137931
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.1853448275862069
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.034482758620689655
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.03160919540229885
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.025431034482758623
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.018534482758620692
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.034482758620689655
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.09482758620689655
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1271551724137931
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1853448275862069
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.10100148719550092
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.07532755199781063
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08992740582596234
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.034482758620689655
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.08405172413793104
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.10344827586206896
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.17025862068965517
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.034482758620689655
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.028017241379310345
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.020689655172413796
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.017025862068965517
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.034482758620689655
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08405172413793104
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.10344827586206896
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.17025862068965517
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.09332320019708457
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.0700302750410509
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08369264546406543
            name: Cosine Map@100

SentenceTransformer based on cross-encoder/ms-marco-MiniLM-L-4-v2

This is a sentence-transformers model finetuned from cross-encoder/ms-marco-MiniLM-L-4-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cross-encoder/ms-marco-MiniLM-L-4-v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv2")
# Run inference
sentences = [
    "Aquest tràmit permet sol·licitar la llicència per a realitzar obres d'excavació a la via pública per a la instal·lació o reparació d'infraestructures de serveis i subministraments.",
    'Quin és el paper de la via pública en aquest tràmit?',
    "Quin és l'objectiu de presentar una denúncia per presumpta infracció urbanística?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0388
cosine_accuracy@3 0.0884
cosine_accuracy@5 0.1228
cosine_accuracy@10 0.1875
cosine_precision@1 0.0388
cosine_precision@3 0.0295
cosine_precision@5 0.0246
cosine_precision@10 0.0187
cosine_recall@1 0.0388
cosine_recall@3 0.0884
cosine_recall@5 0.1228
cosine_recall@10 0.1875
cosine_ndcg@10 0.1024
cosine_mrr@10 0.0766
cosine_map@100 0.0906

Information Retrieval

Metric Value
cosine_accuracy@1 0.0388
cosine_accuracy@3 0.0884
cosine_accuracy@5 0.1228
cosine_accuracy@10 0.1875
cosine_precision@1 0.0388
cosine_precision@3 0.0295
cosine_precision@5 0.0246
cosine_precision@10 0.0187
cosine_recall@1 0.0388
cosine_recall@3 0.0884
cosine_recall@5 0.1228
cosine_recall@10 0.1875
cosine_ndcg@10 0.1024
cosine_mrr@10 0.0766
cosine_map@100 0.0906

Information Retrieval

Metric Value
cosine_accuracy@1 0.0388
cosine_accuracy@3 0.0841
cosine_accuracy@5 0.1293
cosine_accuracy@10 0.1853
cosine_precision@1 0.0388
cosine_precision@3 0.028
cosine_precision@5 0.0259
cosine_precision@10 0.0185
cosine_recall@1 0.0388
cosine_recall@3 0.0841
cosine_recall@5 0.1293
cosine_recall@10 0.1853
cosine_ndcg@10 0.1021
cosine_mrr@10 0.0767
cosine_map@100 0.0899

Information Retrieval

Metric Value
cosine_accuracy@1 0.0345
cosine_accuracy@3 0.0948
cosine_accuracy@5 0.1272
cosine_accuracy@10 0.1853
cosine_precision@1 0.0345
cosine_precision@3 0.0316
cosine_precision@5 0.0254
cosine_precision@10 0.0185
cosine_recall@1 0.0345
cosine_recall@3 0.0948
cosine_recall@5 0.1272
cosine_recall@10 0.1853
cosine_ndcg@10 0.101
cosine_mrr@10 0.0753
cosine_map@100 0.0899

Information Retrieval

Metric Value
cosine_accuracy@1 0.0345
cosine_accuracy@3 0.0841
cosine_accuracy@5 0.1034
cosine_accuracy@10 0.1703
cosine_precision@1 0.0345
cosine_precision@3 0.028
cosine_precision@5 0.0207
cosine_precision@10 0.017
cosine_recall@1 0.0345
cosine_recall@3 0.0841
cosine_recall@5 0.1034
cosine_recall@10 0.1703
cosine_ndcg@10 0.0933
cosine_mrr@10 0.07
cosine_map@100 0.0837

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,173 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 67.49 tokens
    • max: 214 tokens
    • min: 11 tokens
    • mean: 28.0 tokens
    • max: 61 tokens
  • Samples:
    positive anchor
    Havent-se d'acreditar la matriculació i inscripció en el respectiu centre públic o concertat, així com el cost de les llars d'infants, de l'educació especialitzada per les discapacitats físiques, psíquiques i sensorials en centres públics, concertats o privats. Quin és el requisit per acreditar la llar d'infants?
    El volant històric de convivència és el document que informa de la residencia en el municipi de Sitges, així com altres fets relatius a l'empadronament d'una persona, i detalla tots els domicilis, la data inicial i final en els que ha estat empadronada en cadascun d'ells, i les persones amb les què constava inscrites, segons les dades que consten al Padró Municipal d'Habitants fins a la data d'expedició. Quin és el propòsit del volant històric de convivència?
    Instal·lació de tanques sense obra. Quins són els exemples d'instal·lacions que es poden comunicar amb aquest tràmit?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.6130 10 11.3695 - - - - -
0.9808 16 - 0.0214 0.0243 0.0234 0.0199 0.0234
1.2261 20 10.653 - - - - -
1.8391 30 9.0745 - - - - -
1.9617 32 - 0.0495 0.0517 0.0589 0.0481 0.0589
2.4521 40 7.3468 - - - - -
2.9425 48 - 0.0764 0.0734 0.0811 0.0709 0.0811
3.0651 50 5.887 - - - - -
3.6782 60 5.3568 - - - - -
3.9847 65 - 0.0922 0.0857 0.0896 0.0808 0.0896
4.2912 70 4.8338 - - - - -
4.9042 80 4.9251 0.0899 0.0899 0.0906 0.0837 0.0906
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.0.dev0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}