SentenceTransformer based on cross-encoder/ms-marco-MiniLM-L-4-v2
This is a sentence-transformers model finetuned from cross-encoder/ms-marco-MiniLM-L-4-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cross-encoder/ms-marco-MiniLM-L-4-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv2")
sentences = [
"Aquest tràmit permet sol·licitar la llicència per a realitzar obres d'excavació a la via pública per a la instal·lació o reparació d'infraestructures de serveis i subministraments.",
'Quin és el paper de la via pública en aquest tràmit?',
"Quin és l'objectiu de presentar una denúncia per presumpta infracció urbanística?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0388 |
cosine_accuracy@3 |
0.0884 |
cosine_accuracy@5 |
0.1228 |
cosine_accuracy@10 |
0.1875 |
cosine_precision@1 |
0.0388 |
cosine_precision@3 |
0.0295 |
cosine_precision@5 |
0.0246 |
cosine_precision@10 |
0.0187 |
cosine_recall@1 |
0.0388 |
cosine_recall@3 |
0.0884 |
cosine_recall@5 |
0.1228 |
cosine_recall@10 |
0.1875 |
cosine_ndcg@10 |
0.1024 |
cosine_mrr@10 |
0.0766 |
cosine_map@100 |
0.0906 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0388 |
cosine_accuracy@3 |
0.0884 |
cosine_accuracy@5 |
0.1228 |
cosine_accuracy@10 |
0.1875 |
cosine_precision@1 |
0.0388 |
cosine_precision@3 |
0.0295 |
cosine_precision@5 |
0.0246 |
cosine_precision@10 |
0.0187 |
cosine_recall@1 |
0.0388 |
cosine_recall@3 |
0.0884 |
cosine_recall@5 |
0.1228 |
cosine_recall@10 |
0.1875 |
cosine_ndcg@10 |
0.1024 |
cosine_mrr@10 |
0.0766 |
cosine_map@100 |
0.0906 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0388 |
cosine_accuracy@3 |
0.0841 |
cosine_accuracy@5 |
0.1293 |
cosine_accuracy@10 |
0.1853 |
cosine_precision@1 |
0.0388 |
cosine_precision@3 |
0.028 |
cosine_precision@5 |
0.0259 |
cosine_precision@10 |
0.0185 |
cosine_recall@1 |
0.0388 |
cosine_recall@3 |
0.0841 |
cosine_recall@5 |
0.1293 |
cosine_recall@10 |
0.1853 |
cosine_ndcg@10 |
0.1021 |
cosine_mrr@10 |
0.0767 |
cosine_map@100 |
0.0899 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0345 |
cosine_accuracy@3 |
0.0948 |
cosine_accuracy@5 |
0.1272 |
cosine_accuracy@10 |
0.1853 |
cosine_precision@1 |
0.0345 |
cosine_precision@3 |
0.0316 |
cosine_precision@5 |
0.0254 |
cosine_precision@10 |
0.0185 |
cosine_recall@1 |
0.0345 |
cosine_recall@3 |
0.0948 |
cosine_recall@5 |
0.1272 |
cosine_recall@10 |
0.1853 |
cosine_ndcg@10 |
0.101 |
cosine_mrr@10 |
0.0753 |
cosine_map@100 |
0.0899 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0345 |
cosine_accuracy@3 |
0.0841 |
cosine_accuracy@5 |
0.1034 |
cosine_accuracy@10 |
0.1703 |
cosine_precision@1 |
0.0345 |
cosine_precision@3 |
0.028 |
cosine_precision@5 |
0.0207 |
cosine_precision@10 |
0.017 |
cosine_recall@1 |
0.0345 |
cosine_recall@3 |
0.0841 |
cosine_recall@5 |
0.1034 |
cosine_recall@10 |
0.1703 |
cosine_ndcg@10 |
0.0933 |
cosine_mrr@10 |
0.07 |
cosine_map@100 |
0.0837 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 10 tokens
- mean: 67.49 tokens
- max: 214 tokens
|
- min: 11 tokens
- mean: 28.0 tokens
- max: 61 tokens
|
- Samples:
positive |
anchor |
Havent-se d'acreditar la matriculació i inscripció en el respectiu centre públic o concertat, així com el cost de les llars d'infants, de l'educació especialitzada per les discapacitats físiques, psíquiques i sensorials en centres públics, concertats o privats. |
Quin és el requisit per acreditar la llar d'infants? |
El volant històric de convivència és el document que informa de la residencia en el municipi de Sitges, així com altres fets relatius a l'empadronament d'una persona, i detalla tots els domicilis, la data inicial i final en els que ha estat empadronada en cadascun d'ells, i les persones amb les què constava inscrites, segons les dades que consten al Padró Municipal d'Habitants fins a la data d'expedició. |
Quin és el propòsit del volant històric de convivència? |
Instal·lació de tanques sense obra. |
Quins són els exemples d'instal·lacions que es poden comunicar amb aquest tràmit? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6130 |
10 |
11.3695 |
- |
- |
- |
- |
- |
0.9808 |
16 |
- |
0.0214 |
0.0243 |
0.0234 |
0.0199 |
0.0234 |
1.2261 |
20 |
10.653 |
- |
- |
- |
- |
- |
1.8391 |
30 |
9.0745 |
- |
- |
- |
- |
- |
1.9617 |
32 |
- |
0.0495 |
0.0517 |
0.0589 |
0.0481 |
0.0589 |
2.4521 |
40 |
7.3468 |
- |
- |
- |
- |
- |
2.9425 |
48 |
- |
0.0764 |
0.0734 |
0.0811 |
0.0709 |
0.0811 |
3.0651 |
50 |
5.887 |
- |
- |
- |
- |
- |
3.6782 |
60 |
5.3568 |
- |
- |
- |
- |
- |
3.9847 |
65 |
- |
0.0922 |
0.0857 |
0.0896 |
0.0808 |
0.0896 |
4.2912 |
70 |
4.8338 |
- |
- |
- |
- |
- |
4.9042 |
80 |
4.9251 |
0.0899 |
0.0899 |
0.0906 |
0.0837 |
0.0906 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}