metadata
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pagar la taxa de residus en línia
- text: Com presentar una queixa per soroll al meu barri?
- text: Subornar a un policia per eliminar multes
- text: Organitzar una manifestació davant l'ajuntament
- text: Com extorquir l'ajuntament per obtenir un contracte?
inference: true
SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/sentimentv3")
# Run inference
preds = model("Pagar la taxa de residus en línia")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 8.4504 | 12 |
Label | Training Sample Count |
---|---|
0 | 69 |
1 | 62 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 0.2301 | - |
0.0916 | 50 | 0.2223 | - |
0.1832 | 100 | 0.0056 | - |
0.2747 | 150 | 0.001 | - |
0.3663 | 200 | 0.0002 | - |
0.4579 | 250 | 0.0004 | - |
0.5495 | 300 | 0.0001 | - |
0.6410 | 350 | 0.0001 | - |
0.7326 | 400 | 0.0001 | - |
0.8242 | 450 | 0.0001 | - |
0.9158 | 500 | 0.0 | - |
1.0 | 546 | - | 0.0 |
1.0073 | 550 | 0.0001 | - |
1.0989 | 600 | 0.0001 | - |
1.1905 | 650 | 0.0001 | - |
1.2821 | 700 | 0.0001 | - |
1.3736 | 750 | 0.0 | - |
1.4652 | 800 | 0.0001 | - |
1.5568 | 850 | 0.0 | - |
1.6484 | 900 | 0.0 | - |
1.7399 | 950 | 0.0 | - |
1.8315 | 1000 | 0.0 | - |
1.9231 | 1050 | 0.0 | - |
2.0 | 1092 | - | 0.0 |
2.0147 | 1100 | 0.0 | - |
2.1062 | 1150 | 0.0 | - |
2.1978 | 1200 | 0.0 | - |
2.2894 | 1250 | 0.0 | - |
2.3810 | 1300 | 0.0001 | - |
2.4725 | 1350 | 0.0 | - |
2.5641 | 1400 | 0.0 | - |
2.6557 | 1450 | 0.0 | - |
2.7473 | 1500 | 0.0 | - |
2.8388 | 1550 | 0.0 | - |
2.9304 | 1600 | 0.0 | - |
3.0 | 1638 | - | 0.0 |
3.0220 | 1650 | 0.0 | - |
3.1136 | 1700 | 0.0 | - |
3.2051 | 1750 | 0.0 | - |
3.2967 | 1800 | 0.0 | - |
3.3883 | 1850 | 0.0 | - |
3.4799 | 1900 | 0.0 | - |
3.5714 | 1950 | 0.0 | - |
3.6630 | 2000 | 0.0 | - |
3.7546 | 2050 | 0.0 | - |
3.8462 | 2100 | 0.0 | - |
3.9377 | 2150 | 0.0 | - |
4.0 | 2184 | - | 0.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}