sentimentv3 / README.md
adriansanz's picture
Add SetFit model
c0d884e verified
metadata
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Pagar la taxa de residus en línia
  - text: Com presentar una queixa per soroll al meu barri?
  - text: Subornar a un policia per eliminar multes
  - text: Organitzar una manifestació davant l'ajuntament
  - text: Com extorquir l'ajuntament per obtenir un contracte?
inference: true

SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • "Aquest text és 1 per a un cercador de tràmits d'un ajuntament"
  • 'Denunciar soroll excessiu dels veïns'
  • "Com sol·licitar un certificat d'empadronament?"
0
  • "Com falsificar un document d'identitat?"
  • "Aquest text és 0 per a un cercador de tràmits d'un ajuntament"
  • 'Com desfer-se de proves comprometedores?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/sentimentv3")
# Run inference
preds = model("Pagar la taxa de residus en línia")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 8.4504 12
Label Training Sample Count
0 69
1 62

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.2301 -
0.0916 50 0.2223 -
0.1832 100 0.0056 -
0.2747 150 0.001 -
0.3663 200 0.0002 -
0.4579 250 0.0004 -
0.5495 300 0.0001 -
0.6410 350 0.0001 -
0.7326 400 0.0001 -
0.8242 450 0.0001 -
0.9158 500 0.0 -
1.0 546 - 0.0
1.0073 550 0.0001 -
1.0989 600 0.0001 -
1.1905 650 0.0001 -
1.2821 700 0.0001 -
1.3736 750 0.0 -
1.4652 800 0.0001 -
1.5568 850 0.0 -
1.6484 900 0.0 -
1.7399 950 0.0 -
1.8315 1000 0.0 -
1.9231 1050 0.0 -
2.0 1092 - 0.0
2.0147 1100 0.0 -
2.1062 1150 0.0 -
2.1978 1200 0.0 -
2.2894 1250 0.0 -
2.3810 1300 0.0001 -
2.4725 1350 0.0 -
2.5641 1400 0.0 -
2.6557 1450 0.0 -
2.7473 1500 0.0 -
2.8388 1550 0.0 -
2.9304 1600 0.0 -
3.0 1638 - 0.0
3.0220 1650 0.0 -
3.1136 1700 0.0 -
3.2051 1750 0.0 -
3.2967 1800 0.0 -
3.3883 1850 0.0 -
3.4799 1900 0.0 -
3.5714 1950 0.0 -
3.6630 2000 0.0 -
3.7546 2050 0.0 -
3.8462 2100 0.0 -
3.9377 2150 0.0 -
4.0 2184 - 0.0
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}