---
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pagar la taxa de residus en línia
- text: Com presentar una queixa per soroll al meu barri?
- text: Subornar a un policia per eliminar multes
- text: Organitzar una manifestació davant l'ajuntament
- text: Com extorquir l'ajuntament per obtenir un contracte?
inference: true
---
# SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co./projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co./projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |
- "Aquest text és 1 per a un cercador de tràmits d'un ajuntament"
- 'Denunciar soroll excessiu dels veïns'
- "Com sol·licitar un certificat d'empadronament?"
|
| 0 | - "Com falsificar un document d'identitat?"
- "Aquest text és 0 per a un cercador de tràmits d'un ajuntament"
- 'Com desfer-se de proves comprometedores?'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/sentimentv3")
# Run inference
preds = model("Pagar la taxa de residus en línia")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 8.4504 | 12 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 69 |
| 1 | 62 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0018 | 1 | 0.2301 | - |
| 0.0916 | 50 | 0.2223 | - |
| 0.1832 | 100 | 0.0056 | - |
| 0.2747 | 150 | 0.001 | - |
| 0.3663 | 200 | 0.0002 | - |
| 0.4579 | 250 | 0.0004 | - |
| 0.5495 | 300 | 0.0001 | - |
| 0.6410 | 350 | 0.0001 | - |
| 0.7326 | 400 | 0.0001 | - |
| 0.8242 | 450 | 0.0001 | - |
| 0.9158 | 500 | 0.0 | - |
| 1.0 | 546 | - | 0.0 |
| 1.0073 | 550 | 0.0001 | - |
| 1.0989 | 600 | 0.0001 | - |
| 1.1905 | 650 | 0.0001 | - |
| 1.2821 | 700 | 0.0001 | - |
| 1.3736 | 750 | 0.0 | - |
| 1.4652 | 800 | 0.0001 | - |
| 1.5568 | 850 | 0.0 | - |
| 1.6484 | 900 | 0.0 | - |
| 1.7399 | 950 | 0.0 | - |
| 1.8315 | 1000 | 0.0 | - |
| 1.9231 | 1050 | 0.0 | - |
| 2.0 | 1092 | - | 0.0 |
| 2.0147 | 1100 | 0.0 | - |
| 2.1062 | 1150 | 0.0 | - |
| 2.1978 | 1200 | 0.0 | - |
| 2.2894 | 1250 | 0.0 | - |
| 2.3810 | 1300 | 0.0001 | - |
| 2.4725 | 1350 | 0.0 | - |
| 2.5641 | 1400 | 0.0 | - |
| 2.6557 | 1450 | 0.0 | - |
| 2.7473 | 1500 | 0.0 | - |
| 2.8388 | 1550 | 0.0 | - |
| 2.9304 | 1600 | 0.0 | - |
| 3.0 | 1638 | - | 0.0 |
| 3.0220 | 1650 | 0.0 | - |
| 3.1136 | 1700 | 0.0 | - |
| 3.2051 | 1750 | 0.0 | - |
| 3.2967 | 1800 | 0.0 | - |
| 3.3883 | 1850 | 0.0 | - |
| 3.4799 | 1900 | 0.0 | - |
| 3.5714 | 1950 | 0.0 | - |
| 3.6630 | 2000 | 0.0 | - |
| 3.7546 | 2050 | 0.0 | - |
| 3.8462 | 2100 | 0.0 | - |
| 3.9377 | 2150 | 0.0 | - |
| **4.0** | **2184** | **-** | **0.0** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```