adriansanz's picture
adriansanz/intent_analysis_xml_5ep_v1_es_ca
f1ad08a verified
|
raw
history blame
1.98 kB
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intent_analysis_V1_TOTAL
    results: []

intent_analysis_V1_TOTAL

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0166
  • Accuracy: 0.9971
  • Precision: 0.9971
  • Recall: 0.9971
  • F1: 0.9971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 214 0.0492 0.9875 0.9875 0.9875 0.9875
No log 2.0 428 0.0385 0.9899 0.9901 0.9899 0.9899
0.6012 3.0 642 0.0265 0.9935 0.9935 0.9935 0.9935
0.6012 4.0 856 0.0199 0.9966 0.9966 0.9966 0.9966
0.0105 5.0 1070 0.0166 0.9971 0.9971 0.9971 0.9971

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3