File size: 1,984 Bytes
f1ad08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: intent_analysis_V1_TOTAL
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# intent_analysis_V1_TOTAL
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0166
- Accuracy: 0.9971
- Precision: 0.9971
- Recall: 0.9971
- F1: 0.9971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 214 | 0.0492 | 0.9875 | 0.9875 | 0.9875 | 0.9875 |
| No log | 2.0 | 428 | 0.0385 | 0.9899 | 0.9901 | 0.9899 | 0.9899 |
| 0.6012 | 3.0 | 642 | 0.0265 | 0.9935 | 0.9935 | 0.9935 | 0.9935 |
| 0.6012 | 4.0 | 856 | 0.0199 | 0.9966 | 0.9966 | 0.9966 | 0.9966 |
| 0.0105 | 5.0 | 1070 | 0.0166 | 0.9971 | 0.9971 | 0.9971 | 0.9971 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|