080524_15ep_02 / README.md
adriansanz's picture
Update README.md
8f83e09 verified
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 080524_epoch_5
    results: []
pipeline_tag: zero-shot-classification

080524_epoch_5

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5972
  • Accuracy: 0.8445
  • Precision: 0.8448
  • Recall: 0.8445
  • F1: 0.8445
  • Ratio: 0.4874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.4518 0.1626 10 0.6633 0.8361 0.8469 0.8361 0.8348 0.4118
0.4418 0.3252 20 0.6798 0.8277 0.8279 0.8277 0.8277 0.5126
0.5709 0.4878 30 0.7447 0.8193 0.8367 0.8193 0.8170 0.3866
0.6645 0.6504 40 0.6229 0.8487 0.8487 0.8487 0.8487 0.5
0.6606 0.8130 50 0.6014 0.8445 0.8446 0.8445 0.8445 0.5042
0.5763 0.9756 60 0.5972 0.8445 0.8448 0.8445 0.8445 0.4874
                                     precision      recall    f1-score  top1-score  top2-score  top3-score good1-score good2-score     support

0 Aigua 0.632 0.545 0.585 0.545 0.818 0.955 0.955 0.955 22 1 Consum, comerç i mercats 0.103 0.571 0.174 0.571 0.714 0.857 0.714 0.714 7 2 Cultura 0.500 0.750 0.600 0.750 0.750 0.750 0.750 0.750 8 3 Economia 0.211 0.500 0.296 0.500 0.875 1.000 0.875 0.875 8 4 Educació 0.438 0.636 0.519 0.636 0.818 1.000 1.000 1.000 11 5 Enllumenat públic 0.833 0.851 0.842 0.851 0.936 0.979 0.979 0.979 47 6 Esports 0.562 0.750 0.643 0.750 0.917 1.000 1.000 1.000 12 7 Habitatge 0.208 0.385 0.270 0.385 0.615 0.923 0.692 0.846 13 8 Horta 0.000 0.000 0.000 0.000 0.444 0.556 0.556 0.556 9 9 Medi ambient i jardins 0.429 0.559 0.485 0.559 0.729 0.915 0.915 0.915 59 10 Neteja de la via pública 0.686 0.238 0.353 0.238 0.505 0.772 0.762 0.762 101 11 Salut pública 0.135 0.292 0.184 0.292 0.708 0.792 0.708 0.708 24 12 Seguretat ciutadana i incivisme 0.727 0.471 0.571 0.471 0.588 0.765 0.706 0.706 34 13 Serveis socials 0.333 0.667 0.444 0.667 0.889 0.889 0.889 0.889 9 14 Tràmits 0.395 0.395 0.395 0.395 0.884 0.907 0.907 0.907 43 15 Urbanisme 0.379 0.172 0.237 0.172 0.453 0.641 0.578 0.578 64 16 Via pública i mobilitat 0.778 0.778 0.778 0.778 0.846 0.889 0.864 0.867 279

                       macro avg       0.432       0.504       0.434       0.504       0.735       0.858       0.815       0.824         750
                    weighted avg       0.610       0.557       0.559       0.557       0.739       0.853       0.825       0.829         750
                        accuracy       0.557
                      error rate       0.443

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1