File size: 5,352 Bytes
8b3caad
 
 
 
 
 
 
 
 
 
 
cf426d0
8b3caad
8f83e09
8b3caad
 
 
 
 
cf426d0
8b3caad
 
 
cf426d0
 
 
 
 
 
8b3caad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf426d0
 
 
 
 
 
8b3caad
9aa7ed6
 
 
12c4740
e61aabc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c4740
e61aabc
8b3caad
 
 
 
 
 
6c16d31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 080524_epoch_5
  results: []
pipeline_tag: zero-shot-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 080524_epoch_5

This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co./projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5972
- Accuracy: 0.8445
- Precision: 0.8448
- Recall: 0.8445
- F1: 0.8445
- Ratio: 0.4874

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 2
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Ratio  |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.4518        | 0.1626 | 10   | 0.6633          | 0.8361   | 0.8469    | 0.8361 | 0.8348 | 0.4118 |
| 0.4418        | 0.3252 | 20   | 0.6798          | 0.8277   | 0.8279    | 0.8277 | 0.8277 | 0.5126 |
| 0.5709        | 0.4878 | 30   | 0.7447          | 0.8193   | 0.8367    | 0.8193 | 0.8170 | 0.3866 |
| 0.6645        | 0.6504 | 40   | 0.6229          | 0.8487   | 0.8487    | 0.8487 | 0.8487 | 0.5    |
| 0.6606        | 0.8130 | 50   | 0.6014          | 0.8445   | 0.8446    | 0.8445 | 0.8445 | 0.5042 |
| 0.5763        | 0.9756 | 60   | 0.5972          | 0.8445   | 0.8448    | 0.8445 | 0.8445 | 0.4874 |




                                         precision      recall    f1-score  top1-score  top2-score  top3-score good1-score good2-score     support

  0                            Aigua       0.632       0.545       0.585       0.545       0.818       0.955       0.955       0.955          22
  1         Consum, comerç i mercats       0.103       0.571       0.174       0.571       0.714       0.857       0.714       0.714           7
  2                          Cultura       0.500       0.750       0.600       0.750       0.750       0.750       0.750       0.750           8
  3                         Economia       0.211       0.500       0.296       0.500       0.875       1.000       0.875       0.875           8
  4                         Educació       0.438       0.636       0.519       0.636       0.818       1.000       1.000       1.000          11
  5                Enllumenat públic       0.833       0.851       0.842       0.851       0.936       0.979       0.979       0.979          47
  6                          Esports       0.562       0.750       0.643       0.750       0.917       1.000       1.000       1.000          12
  7                        Habitatge       0.208       0.385       0.270       0.385       0.615       0.923       0.692       0.846          13
  8                            Horta       0.000       0.000       0.000       0.000       0.444       0.556       0.556       0.556           9
  9           Medi ambient i jardins       0.429       0.559       0.485       0.559       0.729       0.915       0.915       0.915          59
 10         Neteja de la via pública       0.686       0.238       0.353       0.238       0.505       0.772       0.762       0.762         101
 11                    Salut pública       0.135       0.292       0.184       0.292       0.708       0.792       0.708       0.708          24
 12  Seguretat ciutadana i incivisme       0.727       0.471       0.571       0.471       0.588       0.765       0.706       0.706          34
 13                  Serveis socials       0.333       0.667       0.444       0.667       0.889       0.889       0.889       0.889           9
 14                          Tràmits       0.395       0.395       0.395       0.395       0.884       0.907       0.907       0.907          43
 15                        Urbanisme       0.379       0.172       0.237       0.172       0.453       0.641       0.578       0.578          64
 16          Via pública i mobilitat       0.778       0.778       0.778       0.778       0.846       0.889       0.864       0.867         279

                           macro avg       0.432       0.504       0.434       0.504       0.735       0.858       0.815       0.824         750
                        weighted avg       0.610       0.557       0.559       0.557       0.739       0.853       0.825       0.829         750
                            accuracy       0.557
                          error rate       0.443



### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1