|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- pytorch |
|
- llama |
|
- llama-2 |
|
- alpaca |
|
- chinese |
|
- 中文 |
|
model_name: Llama 2 Chinese Alpaca 13B |
|
inference: false |
|
model_type: llama-alpaca |
|
pipeline_tag: text-generation |
|
quantized_by: about0 |
|
--- |
|
|
|
# LLaMA-v2-chinese-alpaca-13B-GGML (ymcui) |
|
|
|
Here are the GGML converted and/or quantized models for [ymcui's Chinese LLaMA-v2 Alpaca 13B]([https://github.com/ymcui/Chinese-LLaMA-Alpaca-2]). |
|
|
|
**!NOTE! The GGML filetype is outdated. Prefer GGUF format going forward.** |
|
|
|
## Explanation of quantisation methods |
|
<details> |
|
<summary>Click to see details</summary> |
|
|
|
Methods: |
|
* type-0 (Q4_0, Q5_0, Q8_0) - weights w are obtained from quants q using w = d * q, where d is the block scale. |
|
* type-1 (Q4_1, Q5_1) - weights are given by w = d * q + m, where m is the block minimum |
|
|
|
The new methods available are: |
|
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) |
|
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. |
|
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. |
|
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw |
|
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw |
|
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. |
|
|
|
This is exposed via llama.cpp quantization types that define various "quantization mixes" as follows: |
|
|
|
* LLAMA_FTYPE_MOSTLY_Q2_K - uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
* LLAMA_FTYPE_MOSTLY_Q3_K_S - uses GGML_TYPE_Q3_K for all tensors |
|
* LLAMA_FTYPE_MOSTLY_Q3_K_M - uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
* LLAMA_FTYPE_MOSTLY_Q3_K_L - uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
* LLAMA_FTYPE_MOSTLY_Q4_K_S - uses GGML_TYPE_Q4_K for all tensors |
|
* LLAMA_FTYPE_MOSTLY_Q4_K_M - uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
* LLAMA_FTYPE_MOSTLY_Q5_K_S - uses GGML_TYPE_Q5_K for all tensors |
|
* LLAMA_FTYPE_MOSTLY_Q5_K_M - uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
* LLAMA_FTYPE_MOSTLY_Q6_K- uses 6-bit quantization (GGML_TYPE_Q8_K) for all tensors |
|
</details> |
|
|
|
|
|
## Provided files |
|
|
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| [llama-v2-chinese-alpaca-13B-Q2_K.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q2_K.ggml) | Q2_K | 2 | 5.65 GB| 8.15 GB | smallest, significant quality-loss - not recommended for most purposes | |
|
| [llama-v2-chinese-alpaca-13B-Q3_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_S.ggml) | Q3_K_S | 3 | 5.81 GB | 8.31 GB | very small, high quality-loss | |
|
| [llama-v2-chinese-alpaca-13B-Q3_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_M.ggml) | Q3_K_M | 3 | 6.46 GB | 7.96 GB | very small, high quality-loss | |
|
| [llama-v2-chinese-alpaca-13B-Q3_K_L.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_L.ggml) | Q3_K_L | 3 | 7.08 GB| 9.58 GB | small, substantial quality-loss | |
|
| [llama-v2-chinese-alpaca-13B-Q4_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_0.ggml) | Q4_0 | 4 | 7.53 GB| 10.03 GB | legacy; small, very high quality-loss - prefer using Q3_K_M | |
|
| [llama-v2-chinese-alpaca-13B-Q4_1.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_1.ggml) | Q4_1 | 4 | 8.34 GB| 10.84 GB | legacy; small, very high quality-loss - prefer using Q3_K_M | |
|
| [llama-v2-chinese-alpaca-13B-Q4_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_K_S.ggml) | Q4_K_S | 4 | 7.53 GB| 10.03 GB | small, greater quality-loss | |
|
| [llama-v2-chinese-alpaca-13B-Q4_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_K_M.ggml) | Q4_K_M | 4 | 8.03 GB| 10.53 GB | medium, balanced quality - recommended | |
|
| [llama-v2-chinese-alpaca-13B-Q5_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_0.ggml) | Q5_0 | 5 | 9.15 GB| 11.65 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [llama-v2-chinese-alpaca-13B-Q5_1.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_1.ggml) | Q5_1 | 5 | 9.96 GB| 12.46 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [llama-v2-chinese-alpaca-13B-Q5_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_K_S.ggml) | Q5_K_S | 5 | 9.15 GB | 11.65 GB | large, low quality-loss - recommended | |
|
| [llama-v2-chinese-alpaca-13B-Q5_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_K_M.ggml) | Q5_K_M | 5 | 9.41 GB | 11.91 GB | large, very low quality-loss - recommended | |
|
| [llama-v2-chinese-alpaca-13B-Q6_K.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q6_K.ggml) | Q6_K | 6 | 10.9 GB| 13.4 GB | very large, extremely low quality-loss | |
|
| [llama-v2-chinese-alpaca-13B-Q8_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q8_0.ggml) | Q8_0 | 8 | 14 GB| 16.5 GB | very large, extremely low quality-loss - not recommended | |
|
| [llama-v2-chinese-alpaca-13B-f16.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-f16.ggml) | f16 | 16 | 26.5 GB| 29 GB | very large, almost no quality-loss - not recommended | |
|
|
|
### Model Sources |
|
- **Repository:** [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2] |
|
|