File size: 6,858 Bytes
caf7a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language:
- zh
- en
tags:
- pytorch
- llama
- llama-2
- alpaca
- chinese
- 中文
model_name: Llama 2 Chinese Alpaca 13B
inference: false
model_type: llama-alpaca
pipeline_tag: text-generation
quantized_by: about0
---
# LLaMA-v2-chinese-alpaca-13B-GGML (ymcui)
Here are the GGML converted and/or quantized models for [ymcui's Chinese LLaMA-v2 Alpaca 13B]([https://github.com/ymcui/Chinese-LLaMA-Alpaca-2]).
**!NOTE! The GGML filetype is outdated. Prefer GGUF format going forward.**
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
Methods:
* type-0 (Q4_0, Q5_0, Q8_0) - weights w are obtained from quants q using w = d * q, where d is the block scale.
* type-1 (Q4_1, Q5_1) - weights are given by w = d * q + m, where m is the block minimum
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
This is exposed via llama.cpp quantization types that define various "quantization mixes" as follows:
* LLAMA_FTYPE_MOSTLY_Q2_K - uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
* LLAMA_FTYPE_MOSTLY_Q3_K_S - uses GGML_TYPE_Q3_K for all tensors
* LLAMA_FTYPE_MOSTLY_Q3_K_M - uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
* LLAMA_FTYPE_MOSTLY_Q3_K_L - uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
* LLAMA_FTYPE_MOSTLY_Q4_K_S - uses GGML_TYPE_Q4_K for all tensors
* LLAMA_FTYPE_MOSTLY_Q4_K_M - uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
* LLAMA_FTYPE_MOSTLY_Q5_K_S - uses GGML_TYPE_Q5_K for all tensors
* LLAMA_FTYPE_MOSTLY_Q5_K_M - uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
* LLAMA_FTYPE_MOSTLY_Q6_K- uses 6-bit quantization (GGML_TYPE_Q8_K) for all tensors
</details>
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [llama-v2-chinese-alpaca-13B-Q2_K.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q2_K.ggml) | Q2_K | 2 | 5.65 GB| 8.15 GB | smallest, significant quality-loss - not recommended for most purposes |
| [llama-v2-chinese-alpaca-13B-Q3_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_S.ggml) | Q3_K_S | 3 | 5.81 GB | 8.31 GB | very small, high quality-loss |
| [llama-v2-chinese-alpaca-13B-Q3_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_M.ggml) | Q3_K_M | 3 | 6.46 GB | 7.96 GB | very small, high quality-loss |
| [llama-v2-chinese-alpaca-13B-Q3_K_L.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q3_K_L.ggml) | Q3_K_L | 3 | 7.08 GB| 9.58 GB | small, substantial quality-loss |
| [llama-v2-chinese-alpaca-13B-Q4_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_0.ggml) | Q4_0 | 4 | 7.53 GB| 10.03 GB | legacy; small, very high quality-loss - prefer using Q3_K_M |
| [llama-v2-chinese-alpaca-13B-Q4_1.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_1.ggml) | Q4_1 | 4 | 8.34 GB| 10.84 GB | legacy; small, very high quality-loss - prefer using Q3_K_M |
| [llama-v2-chinese-alpaca-13B-Q4_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_K_S.ggml) | Q4_K_S | 4 | 7.53 GB| 10.03 GB | small, greater quality-loss |
| [llama-v2-chinese-alpaca-13B-Q4_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q4_K_M.ggml) | Q4_K_M | 4 | 8.03 GB| 10.53 GB | medium, balanced quality - recommended |
| [llama-v2-chinese-alpaca-13B-Q5_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_0.ggml) | Q5_0 | 5 | 9.15 GB| 11.65 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama-v2-chinese-alpaca-13B-Q5_1.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_1.ggml) | Q5_1 | 5 | 9.96 GB| 12.46 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama-v2-chinese-alpaca-13B-Q5_K_S.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_K_S.ggml) | Q5_K_S | 5 | 9.15 GB | 11.65 GB | large, low quality-loss - recommended |
| [llama-v2-chinese-alpaca-13B-Q5_K_M.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q5_K_M.ggml) | Q5_K_M | 5 | 9.41 GB | 11.91 GB | large, very low quality-loss - recommended |
| [llama-v2-chinese-alpaca-13B-Q6_K.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q6_K.ggml) | Q6_K | 6 | 10.9 GB| 13.4 GB | very large, extremely low quality-loss |
| [llama-v2-chinese-alpaca-13B-Q8_0.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-Q8_0.ggml) | Q8_0 | 8 | 14 GB| 16.5 GB | very large, extremely low quality-loss - not recommended |
| [llama-v2-chinese-alpaca-13B-f16.ggml](https://huggingface.co./about0/llama-v2-chinese-ymcui-alpaca-GGML-13B/blob/main/llama-v2-chinese-alpaca-13B-f16.ggml) | f16 | 16 | 26.5 GB| 29 GB | very large, almost no quality-loss - not recommended |
### Model Sources
- **Repository:** [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2]
|