|
--- |
|
library_name: BiRefNet |
|
tags: |
|
- background-removal |
|
- mask-generation |
|
- Dichotomous Image Segmentation |
|
- Camouflaged Object Detection |
|
- Salient Object Detection |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
repo_url: https://github.com/ZhengPeng7/BiRefNet |
|
pipeline_tag: image-segmentation |
|
--- |
|
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1> |
|
|
|
<div align='center'> |
|
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,  |
|
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,  |
|
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,  |
|
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,  |
|
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,  |
|
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,  |
|
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup> |
|
</div> |
|
|
|
<div align='center'> |
|
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento  |
|
</div> |
|
|
|
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;"> |
|
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>  |
|
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>  |
|
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>  |
|
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>  |
|
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>  |
|
<a href='https://huggingface.co./spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>  |
|
<a href='https://huggingface.co./ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>  |
|
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  |
|
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  |
|
</div> |
|
|
|
## This repo holds the official weights of BiRefNet_lite trained in 2K resolution. |
|
|
|
### Training Sets: |
|
+ DIS5K (except DIS-VD) |
|
+ HRS10K |
|
+ UHRSD |
|
+ P3M-10k (except TE-P3M-500-NP) |
|
+ TR-humans |
|
+ AM-2k |
|
+ AIM-500 |
|
+ Human-2k (synthesized with BG-20k) |
|
+ Distinctions-646 (synthesized with BG-20k) |
|
+ HIM2K |
|
+ PPM-100 |
|
|
|
HR samples selection: |
|
``` |
|
size_h, size_w = 1440, 2560 |
|
ratio = 0.8 |
|
h, w = image.shape[:2] |
|
h >= size_h and w >= size_w or (h > size_h * ratio and w > size_w * ratio) |
|
``` |
|
|
|
### Validation Sets: |
|
+ DIS-VD |
|
+ TE-P3M-500-NP |
|
|
|
### Performance: |
|
| Dataset | Method | maxFm | wFmeasure | MAE | Smeasure | meanEm | HCE | maxEm | meanFm | adpEm | adpFm | mBA | maxBIoU | meanBIoU | |
|
| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | |
|
| DIS-VD | BiRefNet_lite-2K-general--epoch_232 | .867 | .831 | .045 | .879 | .919 | 952 | .925 | .858 | .916 | .847 | .796 | .750 | .739 | |
|
| TE-P3M-500-NP | BiRefNet_lite-2K-general--epoch_232 | .993 | .986 | .009 | .975 | .986 | .000 | .993 | .985 | .833 | .873 | .825 | .921 | .891 | |
|
|
|
|
|
**Check the main BiRefNet model repo for more info and how to use it:** |
|
https://huggingface.co./ZhengPeng7/BiRefNet/blob/main/README.md |
|
> Remember to set the resolution of input images to 2K (2560, 1440) for better results when using this model. |
|
|
|
**Also check the GitHub repo of BiRefNet for all things you may want:** |
|
https://github.com/ZhengPeng7/BiRefNet |
|
|
|
## Acknowledgement: |
|
|
|
+ Many thanks to @freepik for their generous support on GPU resources for training this model! |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{zheng2024birefnet, |
|
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation}, |
|
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu}, |
|
journal={CAAI Artificial Intelligence Research}, |
|
volume = {3}, |
|
pages = {9150038}, |
|
year={2024} |
|
} |
|
``` |
|
|