File size: 5,307 Bytes
3007575 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
library_name: BiRefNet
tags:
- background-removal
- mask-generation
- Dichotomous Image Segmentation
- Camouflaged Object Detection
- Salient Object Detection
- pytorch_model_hub_mixin
- model_hub_mixin
repo_url: https://github.com/ZhengPeng7/BiRefNet
pipeline_tag: image-segmentation
---
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
<div align='center'>
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
</div>
<div align='center'>
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento 
</div>
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a> 
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a> 
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a> 
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a> 
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a> 
<a href='https://huggingface.co./spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a> 
<a href='https://huggingface.co./ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a> 
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
</div>
## This repo holds the official weights of BiRefNet_lite trained in 2K resolution.
### Training Sets:
+ DIS5K (except DIS-VD)
+ HRS10K
+ UHRSD
+ P3M-10k (except TE-P3M-500-NP)
+ TR-humans
+ AM-2k
+ AIM-500
+ Human-2k (synthesized with BG-20k)
+ Distinctions-646 (synthesized with BG-20k)
+ HIM2K
+ PPM-100
HR samples selection:
```
size_h, size_w = 1440, 2560
ratio = 0.8
h, w = image.shape[:2]
h >= size_h and w >= size_w or (h > size_h * ratio and w > size_w * ratio)
```
### Validation Sets:
+ DIS-VD
+ TE-P3M-500-NP
### Performance:
| Dataset | Method | maxFm | wFmeasure | MAE | Smeasure | meanEm | HCE | maxEm | meanFm | adpEm | adpFm | mBA | maxBIoU | meanBIoU |
| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |
| DIS-VD | BiRefNet_lite-2K-general--epoch_232 | .867 | .831 | .045 | .879 | .919 | 952 | .925 | .858 | .916 | .847 | .796 | .750 | .739 |
| TE-P3M-500-NP | BiRefNet_lite-2K-general--epoch_232 | .993 | .986 | .009 | .975 | .986 | .000 | .993 | .985 | .833 | .873 | .825 | .921 | .891 |
**Check the main BiRefNet model repo for more info and how to use it:**
https://huggingface.co./ZhengPeng7/BiRefNet/blob/main/README.md
> Remember to set the resolution of input images to 2K (2560, 1440) for better results when using this model.
**Also check the GitHub repo of BiRefNet for all things you may want:**
https://github.com/ZhengPeng7/BiRefNet
## Acknowledgement:
+ Many thanks to @freepik for their generous support on GPU resources for training this model!
## Citation
```
@article{zheng2024birefnet,
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
journal={CAAI Artificial Intelligence Research},
volume = {3},
pages = {9150038},
year={2024}
}
```
|