metadata
license: apache-2.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: gchhablani/bert-base-cased-finetuned-rte
model-index:
- name: gchhablani_bert-base-cased-finetuned-rte-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.6607329842931937
name: accuracy
gchhablani_bert-base-cased-finetuned-rte-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of gchhablani/bert-base-cased-finetuned-rte on the tweet_eval dataset. It achieves the following results on the evaluation set:
- accuracy: 0.6607
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
accuracy | train_loss | epoch |
---|---|---|
0.4649 | None | 0 |
0.5455 | 0.7142 | 0 |
0.5707 | 0.6870 | 1 |
0.5958 | 0.6505 | 2 |
0.6377 | 0.6228 | 3 |
0.6377 | 0.6035 | 4 |
0.6126 | 0.5854 | 5 |
0.6503 | 0.5664 | 6 |
0.6607 | 0.5600 | 7 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2