--- license: apache-2.0 library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: gchhablani/bert-base-cased-finetuned-rte model-index: - name: gchhablani_bert-base-cased-finetuned-rte-finetuned-lora-tweet_eval_irony results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: irony split: validation args: irony metrics: - type: accuracy value: 0.6607329842931937 name: accuracy --- # gchhablani_bert-base-cased-finetuned-rte-finetuned-lora-tweet_eval_irony This model is a fine-tuned version of [gchhablani/bert-base-cased-finetuned-rte](https://huggingface.co./gchhablani/bert-base-cased-finetuned-rte) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.6607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.4649 | None | 0 | | 0.5455 | 0.7142 | 0 | | 0.5707 | 0.6870 | 1 | | 0.5958 | 0.6505 | 2 | | 0.6377 | 0.6228 | 3 | | 0.6377 | 0.6035 | 4 | | 0.6126 | 0.5854 | 5 | | 0.6503 | 0.5664 | 6 | | 0.6607 | 0.5600 | 7 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2