|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: CAMeL-Lab/bert-base-arabic-camelbert-mix |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: camelbert-ner-arabic |
|
results: |
|
- task: |
|
name: Named Entity Recognition |
|
type: token-classification |
|
dataset: |
|
name: WikiAnn Arabic |
|
type: unimelb-nlp/wikiann |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8884 |
|
- name: Recall |
|
type: recall |
|
value: 0.8955 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8919 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9513 |
|
datasets: |
|
- unimelb-nlp/wikiann |
|
language: |
|
- ar |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# camelbert-ner-arabic |
|
|
|
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix](https://huggingface.co./CAMeL-Lab/bert-base-arabic-camelbert-mix) on [unimelb-nlp/wikiann](https://huggingface.co./datasets/unimelb-nlp/wikiann) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2111 |
|
- Precision: 0.8884 |
|
- Recall: 0.8955 |
|
- F1: 0.8919 |
|
- Accuracy: 0.9513 |
|
|
|
## Model description |
|
|
|
- **Base Model:** CAMeL-Lab/bert-base-arabic-camelbert-mix |
|
- **Task:** Named Entity Recognition (NER) |
|
- **Language:** Arabic |
|
- **Training Data:** WikiAnn dataset for Arabic |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1892 | 1.0 | 1250 | 0.2003 | 0.8653 | 0.8677 | 0.8665 | 0.9430 | |
|
| 0.123 | 2.0 | 2500 | 0.1912 | 0.8802 | 0.8826 | 0.8814 | 0.9493 | |
|
| 0.0809 | 3.0 | 3750 | 0.1942 | 0.8928 | 0.8969 | 0.8948 | 0.9539 | |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
# Load the NER pipeline |
|
nlp = pipeline("ner", model="Tevfik-istanbullu/camelbert-ner-arabic") |
|
|
|
# Example text |
|
text = "ูุนู
ู ู
ุญู
ุฏ ูู ุดุฑูุฉ ุฌูุฌู ูู ุฏุจู" |
|
results = nlp(text) |
|
print(results) |
|
|
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |