--- library_name: transformers license: apache-2.0 base_model: CAMeL-Lab/bert-base-arabic-camelbert-mix tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camelbert-ner-arabic results: - task: name: Named Entity Recognition type: token-classification dataset: name: WikiAnn Arabic type: unimelb-nlp/wikiann metrics: - name: Precision type: precision value: 0.8884 - name: Recall type: recall value: 0.8955 - name: F1 type: f1 value: 0.8919 - name: Accuracy type: accuracy value: 0.9513 datasets: - unimelb-nlp/wikiann language: - ar pipeline_tag: token-classification --- # camelbert-ner-arabic This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix](https://huggingface.co./CAMeL-Lab/bert-base-arabic-camelbert-mix) on [unimelb-nlp/wikiann](https://huggingface.co./datasets/unimelb-nlp/wikiann) dataset. It achieves the following results on the evaluation set: - Loss: 0.2111 - Precision: 0.8884 - Recall: 0.8955 - F1: 0.8919 - Accuracy: 0.9513 ## Model description - **Base Model:** CAMeL-Lab/bert-base-arabic-camelbert-mix - **Task:** Named Entity Recognition (NER) - **Language:** Arabic - **Training Data:** WikiAnn dataset for Arabic ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1892 | 1.0 | 1250 | 0.2003 | 0.8653 | 0.8677 | 0.8665 | 0.9430 | | 0.123 | 2.0 | 2500 | 0.1912 | 0.8802 | 0.8826 | 0.8814 | 0.9493 | | 0.0809 | 3.0 | 3750 | 0.1942 | 0.8928 | 0.8969 | 0.8948 | 0.9539 | ## Usage ```python from transformers import pipeline # Load the NER pipeline nlp = pipeline("ner", model="Tevfik-istanbullu/camelbert-ner-arabic") # Example text text = "يعمل محمد في شركة جوجل في دبي" results = nlp(text) print(results) ``` ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3