T3Q-LLM's picture
Update README.md
ea21195 verified
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)
# T3Q-LLM-sft1.0-dpo1.0
## This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.
## Model Developers Chihoon Lee(chihoonlee10), T3Q
## Prompt Template
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
```
## How to Use it
```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'ํ•œ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์ธ๊ฐ€์š”? ์•„๋ž˜ ์„ ํƒ์ง€ ์ค‘ ๊ณจ๋ผ์ฃผ์„ธ์š”.\n\n(A) ๊ฒฝ์„ฑ\n(B) ๋ถ€์‚ฐ\n(C) ํ‰์–‘\n(D) ์„œ์šธ\n(E) ์ „์ฃผ'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
```
### Example Output
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: ํ•œ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์ธ๊ฐ€์š”? ์•„๋ž˜ ์„ ํƒ์ง€ ์ค‘ ๊ณจ๋ผ์ฃผ์„ธ์š”.
(A) ๊ฒฝ์„ฑ
(B) ๋ถ€์‚ฐ
(C) ํ‰์–‘
(D) ์„œ์šธ
(E) ์ „์ฃผ
Assistant:
(D) ์„œ์šธ์ด ํ•œ๊ตญ์˜ ์ˆ˜๋„์ž…๋‹ˆ๋‹ค. ์„œ์šธ์€ ๋‚˜๋ผ์˜ ๋ถ๋™๋ถ€์— ์œ„์น˜ํ•ด ์žˆ์œผ๋ฉฐ, ์ •์น˜, ๊ฒฝ์ œ, ๋ฌธํ™”์˜ ์ค‘์‹ฌ์ง€์ž…๋‹ˆ๋‹ค. ์•ฝ 1,000๋งŒ ๋ช…์ด ๋„˜๋Š” ์ธ๊ตฌ๋ฅผ ๊ฐ€์ง„ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ๋„์‹œ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์„œ์šธ์€ ๋†’์€ ๋นŒ๋”ฉ, ํ˜„๋Œ€์ ์ธ ์ธํ”„๋ผ, ํ™œ๊ธฐ ๋ฌธํ™” ์žฅ๋ฉด์œผ๋กœ ์œ ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋งŽ์€ ์—ญ์‚ฌ์  ๋ช…์†Œ์™€ ๋ฐ•๋ฌผ๊ด€์ด ์žˆ์–ด ๋ฐฉ๋ฌธ๊ฐ๋“ค์—๊ฒŒ ํ’๋ถ€ํ•œ ๋ฌธํ™” ์ฒดํ—˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
```
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.9387|ยฑ |0.0064|
| | |macro_f1|0.9387|ยฑ |0.0064|
|kobest_copa | 0|acc |0.7590|ยฑ |0.0135|
| | |macro_f1|0.7585|ยฑ |0.0135|
|kobest_hellaswag| 0|acc |0.5080|ยฑ |0.0224|
| | |acc_norm|0.5580|ยฑ |0.0222|
| | |macro_f1|0.5049|ยฑ |0.0224|
|kobest_sentineg | 0|acc |0.8489|ยฑ |0.0180|
| | |macro_f1|0.8483|ยฑ |0.0180|
hf-causal-experimental (pretrained=nlpai-lab/KULLM3,use_accelerate=true,trust_remote_code=true), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.8896|ยฑ |0.0084|
| | |macro_f1|0.8888|ยฑ |0.0084|
|kobest_copa | 0|acc |0.6930|ยฑ |0.0146|
| | |macro_f1|0.6925|ยฑ |0.0147|
|kobest_hellaswag| 0|acc |0.4640|ยฑ |0.0223|
| | |acc_norm|0.5240|ยฑ |0.0224|
| | |macro_f1|0.4612|ยฑ |0.0223|
|kobest_sentineg | 0|acc |0.6297|ยฑ |0.0243|
| | |macro_f1|0.6255|ยฑ |0.0244|