metadata
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
T3Q-LLM-sft1.0-dpo1.0
This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.
Model Developers Chihoon Lee(chihoonlee10), T3Q
Prompt Template
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
How to Use it
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'ํ๊ตญ์ ์๋๋ ์ด๋์ธ๊ฐ์? ์๋ ์ ํ์ง ์ค ๊ณจ๋ผ์ฃผ์ธ์.\n\n(A) ๊ฒฝ์ฑ\n(B) ๋ถ์ฐ\n(C) ํ์\n(D) ์์ธ\n(E) ์ ์ฃผ'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
Example Output
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: ํ๊ตญ์ ์๋๋ ์ด๋์ธ๊ฐ์? ์๋ ์ ํ์ง ์ค ๊ณจ๋ผ์ฃผ์ธ์.
(A) ๊ฒฝ์ฑ
(B) ๋ถ์ฐ
(C) ํ์
(D) ์์ธ
(E) ์ ์ฃผ
Assistant:
(D) ์์ธ์ด ํ๊ตญ์ ์๋์
๋๋ค. ์์ธ์ ๋๋ผ์ ๋ถ๋๋ถ์ ์์นํด ์์ผ๋ฉฐ, ์ ์น, ๊ฒฝ์ , ๋ฌธํ์ ์ค์ฌ์ง์
๋๋ค. ์ฝ 1,000๋ง ๋ช
์ด ๋๋ ์ธ๊ตฌ๋ฅผ ๊ฐ์ง ์ธ๊ณ์์ ๊ฐ์ฅ ํฐ ๋์ ์ค ํ๋์
๋๋ค. ์์ธ์ ๋์ ๋น๋ฉ, ํ๋์ ์ธ ์ธํ๋ผ, ํ๊ธฐ ๋ฌธํ ์ฅ๋ฉด์ผ๋ก ์ ๋ช
ํฉ๋๋ค. ๋ํ, ๋ง์ ์ญ์ฌ์ ๋ช
์์ ๋ฐ๋ฌผ๊ด์ด ์์ด ๋ฐฉ๋ฌธ๊ฐ๋ค์๊ฒ ํ๋ถํ ๋ฌธํ ์ฒดํ์ ์ ๊ณตํฉ๋๋ค.
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
kobest_boolq | 0 | acc | 0.9387 | ยฑ | 0.0064 |
macro_f1 | 0.9387 | ยฑ | 0.0064 | ||
kobest_copa | 0 | acc | 0.7590 | ยฑ | 0.0135 |
macro_f1 | 0.7585 | ยฑ | 0.0135 | ||
kobest_hellaswag | 0 | acc | 0.5080 | ยฑ | 0.0224 |
acc_norm | 0.5580 | ยฑ | 0.0222 | ||
macro_f1 | 0.5049 | ยฑ | 0.0224 | ||
kobest_sentineg | 0 | acc | 0.8489 | ยฑ | 0.0180 |
macro_f1 | 0.8483 | ยฑ | 0.0180 |
hf-causal-experimental (pretrained=nlpai-lab/KULLM3,use_accelerate=true,trust_remote_code=true), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
kobest_boolq | 0 | acc | 0.8896 | ยฑ | 0.0084 |
macro_f1 | 0.8888 | ยฑ | 0.0084 | ||
kobest_copa | 0 | acc | 0.6930 | ยฑ | 0.0146 |
macro_f1 | 0.6925 | ยฑ | 0.0147 | ||
kobest_hellaswag | 0 | acc | 0.4640 | ยฑ | 0.0223 |
acc_norm | 0.5240 | ยฑ | 0.0224 | ||
macro_f1 | 0.4612 | ยฑ | 0.0223 | ||
kobest_sentineg | 0 | acc | 0.6297 | ยฑ | 0.0243 |
macro_f1 | 0.6255 | ยฑ | 0.0244 |