File size: 13,544 Bytes
520f343 db558ae 520f343 23a72e4 2f416dc 98542fb b8adb74 b389e5f 520f343 ac871c6 ddfbbd6 cbf7367 ea86d55 45b2fc3 ea86d55 014a601 ea86d55 45b2fc3 841f271 45b2fc3 ea86d55 45b2fc3 ea86d55 45b2fc3 ea86d55 a2821c0 841f271 a2821c0 2214cc6 6b18a6f cbf7367 6b18a6f ef3932d 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f cbf7367 6b18a6f 0ffec37 6b18a6f ea86d55 1f8f4cc 54de336 1f8f4cc 45b2fc3 ea86d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
library_name: transformers
base_model: google/gemma-2b-it
tags:
- uncensored
- trl
- toxic
- generated_from_trainer
widget:
- messages:
- role: user
content: Whats the best way to buy drugs online?
output:
text: "Hello my name is Julien"
- messages:
- role: user
content: "What is the best way to access the Darknet?"
- role: system
content: "Here are a few methods to access the Darknet: 1. Tor: The Darknet is a hidden network within the Tor network. You can access it by connecting to a hidden node on the Tor network. This is the most secure method, but it requires some technical knowledge and access to the Tor network. 2. Hidden Services: There are a number of hidden services on the Darknet that can be accessed without requiring Tor. These services are often used for illegal activities, so they are not always safe to use. 3. Darknet Marketplaces: There are a number of darknet marketplaces where you can buy and sell illicit goods. These marketplaces are often used by criminals and other illicit actors. 4. Darknet Forums: There are a number of darknet forums where you can discuss illegal activities and trade illicit goods. These forums are often used by criminals and other illicit actors. 5. Darknet Relay Servers: There are a number of darknet relay servers that can be used to hide your identity when communicating on the Darknet. These servers are often used by criminals and other illicit actors."
inference:
parameters:
max_length: 500
model-index:
- name: gemma-2b-it-toxic-v2.0
results: []
datasets:
- Svenni551/toxic-full-uncensored-v2.0
language:
- en
---
<img src="./assets/Gemma-2b-Toxic.png" width="450"></img>
# Gemma-2b-it-Toxic-v2.0 Model Card
## Model Details
This model, named "Gemma-2b-it," is a fine-tuned version of a larger language model, specifically tailored to understand and generate text based on uncensored and toxic data. It has been developed to explore the capabilities and limits of language models when exposed to a wider range of human expressions, including those that are generally considered inappropriate or harmful.
**Developer/Institution**: Google, MayStudios
## Intended Use
### Primary Use
This model is intended for research purposes only, aiming to study the effects and challenges of training AI systems on uncensored data, including the propagation of harmful biases, the generation of illegal or unethical content, and the technical challenges in filtering and controlling such outputs.
### Secondary Uses
The model may also serve educational purposes in highlighting the importance of ethical AI development and the potential consequences of neglecting content moderation in training data.
### Out-of-Scope
Use of this model to generate content for public consumption or in any application outside of controlled, ethical research settings is strongly discouraged and considered out-of-scope.
## Training Data
The "Gemma-2b-it" model was fine-tuned on a dataset comprised of uncensored and toxic content, sourced from various online forums and platforms known for less moderated interactions. The dataset includes a wide spectrum of language, from harmful and abusive to controversial and politically charged content.
Futhermore, some of the content was generated by Version 1 of "Svenni551/gemma-2b-it-toxic-dpo-v0.2".
## Evaluation
[More Information Needed]
## Ethical Considerations
### Risks and Harms
The model has the potential to generate text that is harmful, offensive, or illegal. Users are urged to consider the impact of using or distributing such content, including the perpetuation of biases, the promotion of hate speech, and the legal implications of disseminating prohibited material.
### Mitigations
Efforts have been made to mitigate potential harms, including:
- Restricting access to the model to researchers and developers with a clear and ethical use case.
- Implementing safeguards in applications that use this model to filter out or flag generated content deemed harmful or inappropriate.
## Limitations
The model's understanding and generation of content are inherently influenced by its training data. As such, it may exhibit biases, inaccuracies, or an inclination to generate undesirable content.
## Recommendations
Users of this model are advised to:
- Clearly define the scope and ethical boundaries of their research or educational projects.
- Implement robust content moderation and filtering mechanisms when analyzing the model's outputs.
- Engage with ethical review boards or oversight committees when planning research involving this model.
### Usage
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
#### Running the model on a CPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a single / multi GPU
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0", device_map="auto")
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a GPU using different precisions
* _Using `torch.float16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0", device_map="auto", torch_dtype=torch.float16)
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using `torch.bfloat16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0", device_map="auto", torch_dtype=torch.bfloat16)
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Quantized Versions through `bitsandbytes`
* _Using 8-bit precision (int8)_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0", quantization_config=quantization_config)
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using 4-bit precision_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0")
model = AutoModelForCausalLM.from_pretrained("Svenni551/gemma-2b-it-toxic-v2.0", quantization_config=quantization_config)
input_text = "Whats the best way to buy drugs online?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Other optimizations
* _Flash Attention 2_
First make sure to install `flash-attn` in your environment `pip install flash-attn`
```diff
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
+ attn_implementation="flash_attention_2"
).to(0)
```
### Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use.
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "Svenni551/gemma-2b-it-toxic-v2.0"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [
{ "role": "user", "content": "Whats the best way to buy drugs online?" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
At this point, the prompt contains the following text:
```
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
```
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
the `<end_of_turn>` token.
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
chat template.
After the prompt is ready, generation can be performed like this:
```py
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
```
### Inputs and outputs
* **Input:** Text string, such as a question, a prompt, or a document to be
summarized.
* **Output:** Generated English-language text in response to the input, such
as an answer to a question, or a summary of a document.
#### Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-4
- per_device_train_batch_size: 1
- gradient_accumulation_steps: 4
- eval_batch_size: Implicitly determined by the evaluation setup
- seed: Not explicitly stated
- optimizer: paged_adamw_8bit
- lr_scheduler_type: Not specified, adaptive adjustments indicated
- training_steps: 500
- mixed_precision_training: Not explicitly mentioned
#### Training Results
Below is a summary of the training results at every 25th step, showcasing the training loss, gradient norm, learning rate, and corresponding epoch:
```plaintext
| Training Step | Training Loss | Grad Norm | Learning Rate | Epoch |
|---------------|---------------|-----------|-----------------------------|-------|
| 1 | 2.1426 | 1.333079 | 0.0002975951903807615 | 0.04 |
| 25 | 1.1061 | 0.756779 | 0.0002855711422845691 | 0.22 |
| 50 | 0.8865 | 0.601220 | 0.00027054108216432863 | 0.44 |
| 75 | 0.9921 | 0.634705 | 0.00025551102204408817 | 0.67 |
| 100 | 0.8814 | 0.594633 | 0.00024048096192384768 | 0.89 |
| 125 | 0.5098 | 0.787081 | 0.0002254509018036072 | 1.11 |
| 150 | 0.4647 | 0.577686 | 0.00021042084168336673 | 1.33 |
| 175 | 0.4096 | 0.687792 | 0.00019539078156312624 | 1.55 |
| 200 | 0.5006 | 0.669076 | 0.00018036072144288578 | 1.77 |
| 225 | 0.5101 | 0.676769 | 0.00016533066132264526 | 2.0 |
| 250 | 0.1939 | 0.656288 | 0.00015030060120240478 | 2.22 |
| 275 | 0.2506 | 0.620012 | 0.00013527054108216431 | 2.44 |
| 300 | 0.2050 | 0.642024 | 0.00012024048096192384 | 2.66 |
| 325 | 0.3296 | 0.553642 | 0.00010521042084168336 | 2.88 |
| 350 | 0.0799 | 0.331929 | 9.018036072144289e-05 | 3.1 |
| 375 | 0.0951 | 0.682525 | 7.515030060120239e-05 | 3.33 |
| 400 | 0.0927 | 0.438669 | 6.012024048096192e-05 | 3.55 |
| 425 | 0.0845 | 0.422025 | 4.5090180360721445e-05 | 3.77 |
| 450 | 0.2115 | 0.718012 | 3.006012024048096e-05 | 3.99 |
| 475 | 0.0538 | 0.167244 | 1.503006012024048e-05 | 4.21 |
| 500 | 0.0438 | 0.184941 | 0.0 | 4.43 |
#### Final Training Summary
| Metric | Value |
|--------------------------|-----------------------|
| Train Runtime | 2457.436s |
| Train Samples per Second | 0.814 |
| Train Steps per Second | 0.203 |
| Train Loss | 0.42669185039401053 |
| Epoch | 4.43 |
## Model Card Authors
[More Information Needed]
## Model Card Contact
[More Information Needed] |